
P2015006 1

Abstract— This paper describes the approach and techniques

used to accelerate Architecture definition. It focuses on “real

world” practical applications of three critical factors:

• Engagement approach, including use of the Zachman

Framework and the choice of Artifacts

• Techniques to speed up Artifact generation using UML

(Unified Modeling Language)

• Techniques to manage stakeholders and obtain sign-off

Index Terms — Enterprise Architecture, Methodology,

Zachman Framework, UML.

I. INTRODUCTION

Currently several industries are undergoing mergers,

acquisitions, splits or reorganizations in an effort to adapt to

new business challenges. Enterprise architecture is needed to

implement these changes, but paradoxically the investments

and time allocated to architecture are being reduced. As

budgets tighten, the enterprise architect must learn to “do

more with less”.

This paper provides some ideas on how to meet these

challenges. It is a case study of architecture for a very large

and complex domain. Using the approach here described, the

time to architecture definition and signoff was reduced from

18 months to 6 months.

Similar approaches can be applied to other engagements,

especially where schedule and budget are constrained.

This paper assumes reader knowledge of the Zachman

Framework and UML.

II. MOTIVATION AND PURPOSE

Senior management requested definition of architecture to

support strategic decisions. The architecture needed to define

business process changes, the roles and responsibilities for

each organization, list the IT systems required and identify

ownership/governance for each system.

The scope included dozens of stakeholders, hundreds of

business processes and tens of IT systems worldwide. Peer

review estimated that 18 months would be required to

generate an architecture, but management required it in 6

months. What follows is a summary of the key factors that

were instrumental in achieving this very challenging target.

III. ARCHITECTURE ACCELERATION FACTORS

A. Always do architecture

Previous efforts had to spend time recreating architectural

information that was in fact already available but not

accessible, due to several reasons: for example the

information was in an unusable format, or organized in a way

that made it very hard to use, or scattered over so many

reports and organizations that it was impractical to collect it.

However in this specific engagement a significant portion

of the high level architectural concepts and dependencies

could be extracted within days. This information came from

engagements that had followed basic architectural

methodologies and documented their artifacts in standard

formats that were easy to interpret.

B. Start by defining a common language

The most important acceleration factor was reducing the

time that stakeholders needed to talk to each other about

changes in business processes or IT systems.

Several stakeholders were involved: senior managers, line

managers, operational staff, solution vendors, external

consultants. Each had different terminologies, different

operating models and different views of the company’s

organization. All these factors slowed down decision

making, because stakeholders needed time to understand

what was being discussed, analyze it from their own point of

view, and then negotiate with each other.

The very first step of this engagement was the development

of a domain glossary to be used in process or IT discussions.

This dramatically reduced misunderstandings and

communication gaps, and decisions could be reached much

more quickly.

C. Identify and resolve problems at conceptual level

Problems could be attacked and resolved at any level of

detail: from looking at its component parts (physical level) to

looking at the ‘big picture’ (contextual level).

For example, if a business process had unacceptably long

cycle time, we could consider in detail each process step, the

people involved, the quality of information input, the tools

used etc. This would be an example of physical level, and

sometimes it was the best approach.

Other times we looked into why we performed this process

at all: this would be an example of conceptual level

resolution.

It’s impossible to generalize, but experience showed that if

a problem could be resolved at conceptual level, usually it

was easier and faster to do so. The reasons were manifold:

simpler data collection, less details to confuse the issue (not

seeing the forest because of the trees), less stakeholders

involved, better visibility of dependencies with other

domains.

Enterprise Architecture in today’s economy:

no time, no money? No problem!

Richard Freggi, Senior Supply Chain Architect, HP Inc.

P2015006 2

D. Leverage conceptual level agreement to drill down to

details

Stakeholder agreement on “To-Be” scope, goals, priorities,

budget and organization were actively leveraged to speed up

problem resolution at more granular levels of detail. For

example, specifics of IT systems, business processes and

infrastructure could be traced back to the conceptual

agreement and evaluated accordingly. Some agreements at

conceptual level cascaded down to resolve multiple issues at

physical level, providing further acceleration.

IV. OVERVIEW OF ENGAGEMENT APPROACH

The acceleration factors can be described in terms of the

Zachman Framework [1],[2]. This provides a useful

representation even for engagements using a different

Framework.

A. Typical engagement approaches (non accelerated)

The initial estimate of 18 months duration was based on

the typical engagement approach, which began with analysis

of the applications (Zachman cell Function - Logical). This

felt like a natural place to start, especially for IT teams that

understood applications and invested a great deal of time and

resources in them.

The next step was to develop an alignment between

business processes and applications.

Database schemas, software configuration, interfaces and

infrastructure were based on the application architecture after

it had been harmonized with the business processes.

This approach worked well in simpler engagements where

the scope was limited, the domain was well understood and

the changes to systems and processes were incremental.

However, completing each individual step was difficult

and time-consuming in complex engagements with broader

scope, more stakeholders and multiple dependencies.

In addition, moving from one step the next also was very

challenging, requiring much discussion and back-and-forth

analysis/re-analysis. In terms of the Zachman Framework it

meant that not only it took longer to define one cell; it also

took longer to move from one cell to the next.

Similar problems applied to business-driven engagement

that started from the business process (Zachman cell Function

- Concept) and then aligned to the application architecture.

Regardless of starting point, the alignment of processes

and applications was difficult and slow due to the fact that

many business processes used many different applications,

and vice versa; the relationship between processes and

applications was many:many. The more processes and the

more applications, the harder it was to manage.

B. Accelerated engagement approach

The accelerated approach aimed to move horizontally

across the Zachman Framework using the data dictionary to

complete each cell quickly; and then to move vertically down

in straight lines using each level to complete the next as fast

as possible.

This is different from the typical approach where many

cells are developed by diagonally referring to a single cell

(see Fig. 2).

The acceleration factors were applied to this engagement

is as follows:

 Always do Architecture

Contextual level artifacts developed in earlier engagements

(such as business functions, locations, organization, priorities

and strategies) were available and could be ported to the

engagement scope. This was a significant time saver

because work could begin directly from conceptual level.

 Start by defining a common language

The starting point was a

semantic data dictionary that

could be leveraged to quickly

define business processes and

roles and responsibilities.

The data dictionary not only

facilitated conceptual level

agreement between

stakeholders; it also ensured

Fig. 1: The Zachman Framework for Enterprise Architecture
Derived from: "Zachman Framework Detailed" by Marcel Douwe Dekker based on earlier work of Phogg2 et al. - self-made,

combination of File:Zachman Framework Basics.jpg and File:Zachman Framework.jpg. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Zachman_Framework_Detailed.jpg#/media/File:Zachman_Framework_Detailed.jpg

Fig. 2: Non-accelerated engagement approach

Business
Process

Application+Supports+Is enabled by

0..*0..*

Fig. 3: The relationship between processes and applications was m:m

and difficult to manage when multiple instances were involved

Fig. 4: Accelerated engagement approach

Fig. 5: Application architecture

was based on mutually

consistent process and data

models

https://commons.wikimedia.org/wiki/File:Zachman_Framework_Detailed.jpg#/media/File:Zachman_Framework_Detailed.jpg

P2015006 3

that the process model was fully consistent with the logical

data model. Both could be leveraged in the development of

the application architecture.

 Identify and resolve problems at conceptual level

A particularly long and complex discussion involved

system specification for managing orders. It was difficult to

reconcile application requirements from different teams.

The solution was to change point of view from the physical

(software specification) to conceptual (semantic data

dictionary) and review the data dictionary definition of

‘order’. It quickly emerged that one team thought of orders

as Validated Customer Order / Validated Order Line Item in

Fig. 6; while another used the term ‘order’ to mean ‘Load

Physical Unit’ in Fig. 6, and specifically they wanted to

manage Bills of

Lading.

The data dictionary

helped stakeholders

agree that the order

management system

should not directly

associate Bills of

Lading with Validated

Customer Orders; this

was much easier to do

in transportation

management systems.

 This, and many

similar cases, shows

the value of looking at

some problems from

the conceptual level to

speed up resolution.

 Leverage conceptual level agreement to drill down to

higher level of detail

The semantic data dictionary was a great starting point to

develop the logical data model. This was important not only

to develop database schemas, but also to accelerate the

definition of application architecture.

The reason was that the logical data model resolved the

many:many relationship between processes and applications,

especially because it was consistent with the process model.

This is apparent if we consider that each business process

required information as inputs and outputs: processes had

one:many relations with the business entities of the logical

data model.

Applications provided the inputs and outputs, and could be

defined so that each business entity was provided by one

application (the so-called ‘system of record’). This means

that applications had a one:many relation to the business

entities.

In other words the business entities provided a bridge to

map processes to applications, since one and the same logical

data model applied equally to both, through a series of

one:many relations. These relations remained easy to manage

even as the number of processes and applications grew to be

large.

In summary, it was much easier to define the applications

in terms of what information they managed instead of what

processes they supported.

Physical level architecture could be developed quickly

because many problems, inconsistencies and contradictions

had already been identified and eliminated at conceptual and

logical level.

Eliminating as many issues as possible at the conceptual

and logical level led to fast progress, because resolving

integration issues at the level of database tables, software

configuration and infrastructure was difficult, expensive and

slow.

V. UML TO ACCELERATE ARTIFACT GENERATION

In this engagement most of the Zachman Framework cells

in scope were documented using UML diagrams.

UML is typically used for software engineering at logical

and physical level; however several authors have noted that

UML is equally useful to describe the enterprise at contextual

and conceptual level [3],[4]. Fig. 8 shows a summary of the

artifacts and notations used in this specific engagement.

UML provided excellent support for all the acceleration

factors described above. Some examples are:

A. Easy re-use of Classifiers from other engagements

UML provides a robust and efficient mechanism for

Classifier reuse and refactoring, including for example

generalization and dependencies.

Accordingly many Classifiers such as Packages, Actors

and Classes that had been defined in previous projects could

be directly applied to this engagement, especially at

contextual and conceptual level.

B. Fast generation of artifacts for each cell

UML is well documented and supported by several

excellent Open Source CASE tools that are available

immediately and without expense [5].

CASE tool features such as Classifier search and

documentation (semantics) reduced the time spent collecting

and analyzing classifier information.

The CASE tool also automatically generated diagrams and

reports, further reduced time spent documenting artifacts.

This was much faster than manually drawing, updating and

removing inconsistencies in dozens of diagrams using MS

Visio or similar drawing tool.

Load

Item
Unit Of Measure
Quantity
Volume
Weight
Packing
Volume
Description
Declared value

Load
Physical

Unit

Break down to Container/Pallet/Box

0..*

Product

Bill Of
Lading

Shipping
Document

Validated
Customer

Order

Validated
Order Line

Item

Fulfils

0..*

Shipment

Document

Regulatory / Customs

Shipment
Event

Reason Code

+May trigger

0..*

0..*

0..*

1

Business
Process

Business Entity Application

Generates as output

0..*0..1

Provides

0..* 0..1

Requires as input

0..*0..1

Fig. 6 Conceptual level data dictionary

helped to quickly resolve disagreement

on physical level software specification

Fig. 7: Business entities from the logical data model resolved the

m:m relation between processes and applications

y Data Function Newtork People Time Motivation

CONTEXT

Class Diagram Package Diagram
Package

Diagram

Package

Diagram
Text Text

CONCEPT

Class Diagram
Use Case Diagram

Sequence Diagram

Component

Diagram

Use Case

Diagram

(Actors)

Text
MS Excel

Worksheet

LOGICAL

Class Diagram
Component

Diagram

Component

Diagram

Sequence

Diagram

(Objects)

Timing Diagram
MS Excel

Worksheet

PHYSICAL

ERD
Component

Diagram

Deployment

Diagram
Screen shots

Middleware

control logic

Configuration

parameters and

constraints

OUT OF CONTEXT

SQL, DDL, DML,

ABAP etc.
ABAP, Java, etc. Server scripts

Access and

security scripts
ABAP, Java, etc ABAP, Java, etc

John A. Zachman, Zachman International (810)231-0531

Fig. 8: UML artifacts for the accelerated approach

P2015006 4

C. Fast transition from one Zachman Framework cell to

the next

Many Zachman Framework cells shared the same

Classifiers: for example Sequence Diagrams and Component

Diagrams used Classes and Objects from the Class Diagram.

Fig. 8 and 9 show the reuse of Classifiers for the artifacts of

this engagement.

This supported quick drill down from conceptual to

physical level, but it also worked backwards, i.e. a

requirement change at physical level could be quickly

propagated vertically to higher Zachman Framework rows

and horizontally to other columns, because the impact on

each Classifier could be determined as shown in Fig. 9.

This is much harder to do with structured analysis notation

such as process flowcharts, IDEF0, data flow diagrams and

entity-relationship diagrams.

For example, boxes and arrows in a process flowchart did

not correspond directly to entities in the entity relationship

diagram, and neither could be mapped into applications and

flows of a data flow diagram.

Although the necessary Zachman Framework cells could

be documented with these notations, maintaining consistency

across cells would have been a major effort.

VI. STAKEHOLDER MANAGEMENT AND SIGNOFF

UML artifacts were very effective to communicate key

concepts and discuss alternatives, partly because questions

could be expressed at conceptual level in terms familiar to

decision makers and executives; and also because UML

notation could be highly synthetic and helped to filter out

non-essential information.

 The CASE tool was very useful to identify the Classifiers

relevant to the subject matter and quickly generate diagrams

and reports that supported managerial decisions.

Artifacts also simplified and accelerated solution fit/gap

analysis, negotiation with vendors and project planning. This

was a significant factor in stakeholders acceptance and

signoff of the architecture, since its feasibility in practical

terms was proven.

VII. CONCLUSION

The accelerated approach described in this case study is

based on well-established methodologies and tools. It can be

applied to other engagements where speed is a primary

concern and can result in increased business value / Return

on Investment for Enterprise Architecture.

REFERENCES

[1] John Zachman, http://www.zachman.com
[2] Overview of the Zachman Framework is available at

https://en.wikipedia.org/wiki/Zachman_Framework

[3] J. Gorman, UML For Managers, 2005, ch. 4 page 15,
http://www.codemanship.co.uk/parlezuml/e-books/umlformanagers

[4] Mike Rosen, MDA and the Zachman Framework, 2003, available at

http://www.omg.org/news/meetings/workshops/MDA_2003-
2_Manual/1-2_Rosen.pdf

[5] Consult Wikipedia for “List of Unified Modeling Language tools”,

including proprietary and Open Source tools.

Class Diagram

Package DiagramUse Case Diagram

Sequence Diagram

Component Diagram

Deployment Diagram

Packages

Packages

Actors

Objects

Classes

Components (Classes)

Associations

ERD

Entities

Dashed arrows show Dependencies

Fig. 9: Re-use of UML Classifiers speeded up generation of

Zachman Framework artifacts

)

*FXN RM W/H *FXN FG W/HVendor/VMI hub*FXN MFG
*FXN

Procurement
cba

Ship out FG

N

Receive EDI856

and feedback

P824

SAP

Process

Feedback EDI855

in R11

Production

Go to EDITS

process
Generate TPO

Drop EDI850

Check Overdrop

Release

 ACE

Process

Generate DSPO

file

Receive EDI850

Generate

 Pull List

Generate invoice

and send EDI810

Y

Run

Receive Feedback

Run ACE

Receive EDI855

Receive EDI810

and feedback 824

Manual

Process

Send out

EDI856

Generate SO/DN

and DSPI file

PGI

Check and

approve to cancel

order

Send

B2B

Process

Stock in FGI

Receive

Run

SFC

Process

Create

Ship materials

Release

W/O to

MFG

Reserve

materials

Release

materials

Validates capacity

Provides Rules for

Caused by problem

Causes revision

Committed thru

Triggered by

Caused by decision

Recorded in

OPERATIONSPLAN

ROUGHCUTCAPAPLAN

EXCEPTION

SERVICEAGREEMENT

PUBLISHEDOPSPLAN

TRANSACTION

TRANSACTIONCOMMIT

COMMITCHANGE

EXCEPTIONREPORT

PRIORITIZEDEXCEPTIONSLIST

AUDITARCHIVE

Legacy

 Environment

FastEthernet1

TCP

Equipment

 Data Exchange

TCP Windows 2000

Tunnel1 Tunnel2

Flowchart ERD

Network Diagram Data Flow Diagram

ERP Planning

Production

3rd Party B

3rd Party A

Analytics

Fig. 10 Structured analysis artifacts did not share elements,

therefore they required more effort to generate and maintain

)

*FXN RM W/H *FXN FG W/HVendor/VMI hub*FXN MFG
*FXN

Procurement
cba

Ship out FG

N

Receive EDI856

and feedback

P824

SAP

Process

Feedback EDI855

in R11

Production

Go to EDITS

process
Generate TPO

Drop EDI850

Check Overdrop

Release

 ACE

Process

Generate DSPO

file

Receive EDI850

Generate

 Pull List

Generate invoice

and send EDI810

Y

Run

Receive Feedback

Run ACE

Receive EDI855

Receive EDI810

and feedback 824

Manual

Process

Send out

EDI856

Generate SO/DN

and DSPI file

PGI

Check and

approve to cancel

order

Send

B2B

Process

Stock in FGI

Receive

Run

SFC

Process

Create

Ship materials

Release

W/O to

MFG

Reserve

materials

Release

materials

a

b

Provide this

c
Create that

Feedback

Receive

?OK

Fig. 11: UML notation (left side) communicated complex

questions better than structured analysis notation (right side)

Artifact Project Control Document

Project glossary / definition of terms

Project scope definition

Project approach

Project sponsor assignment

Project team roster

Stakeholder management plan

Test plan definition

Management of change and training plan

Project scope definition

RFP, RFQ, vendor Statement Of Work

Class Diagram

Use Case Diagrams

Sequence Diagrams

Component Diagram

Deployment Diagram

Fig. 12: Artifacts of the accelerated approach used to define scope,

deliverables and governance of implementation projects

http://www.zachman.com/
https://en.wikipedia.org/wiki/Zachman_Framework
http://www.codemanship.co.uk/parlezuml/e-books/umlformanagers
http://www.omg.org/news/meetings/workshops/MDA_2003-2_Manual/1-2_Rosen.pdf
http://www.omg.org/news/meetings/workshops/MDA_2003-2_Manual/1-2_Rosen.pdf

