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Abstract—In order that electronic medical records have the 

same legal effects as the entity records, electronic signature must 

be able to ensure the integrity, identity identification and 

repudiation. Although the existing electronic medical records for 

made, save modify are norms, the protection of privacy for 

patients is still weak. In particular, medical information is passed 

through Internet. Once the computer network is under attack, the 

whole privacy information will fall into the mire of the crisis. 

Therefore, information security increasingly national attention. 

Even if more and more companies to provide services through the 

Internet, but for services on the Internet, is still a very scruples. 

Especially sensitive personal data and financial information 

transmitted on the Internet might be stolen, malicious 

depredation, forgery attack and so on. It is difficult to establish 

security and fair transactions. Therefore fair exchange protocol 

make users getting information of each other in a fair way, so 

becomes an extensively studied topic in research related to 

personal information protection applications. Concurrent 

signatures were introduced as an alternative approach to solving 

the problem of fair exchange of signatures by Chen et al. in 2004. 

In these concurrent signature schemes, two parties can produce 

two ambiguous signatures. These signatures bind to their true 

signers concurrently only when the keystone is released by one of 

the parties. Zhang et al. improved a concurrent signature scheme 

based on identity in 2011. However, there is a security problem of 

identity authentication mechanism in their scheme. Therefore, we 

enhance identity authentication mechanism and prevent forged 

identity attack by a self-certified scheme. We propose a concurrent 

signature based on bilinear pairings and self-certified scheme. 

 
Index Terms—Bilinear pairings, Concurrent Signature, Fair 

Exchange, Self-Certified.  

I. INTRODUCTION 

ITH the rapid development of the Internet, more and 

more information through network to communicate. 

Therefore, the existence of the network is subject to security 

concerns involving identity management, peer authentication, 

personal privacy and so forth. In the study of cryptography, the 

fair exchange protocol is attempt to solve this problem so that 

untrusted parties can exchange information fairly over the 

network. In exchange protocol, fairness means that at the end 

of the agreement, each party can obtain the expected items, or 

both of them do not obtain any useful information. 
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Many previous literatures studied the problem of fair 

exchange. Specifically, after the concept of optimistic fair 

signatures was proposed by Asokan et al. in 1998[1], numerous 

studies [2]-[5] have proposed fair exchange schemes that enable 

offline trusted third party (TTP). Chen et al. [6] observed that a 

fair exchange signature scheme is not required for numerous 

applications. They found a mechanism that enables more 

conflict resolution without the participation of a TTP, namely, 

concurrent signatures. To enhance the anonymity of the 

concurrent signature scheme proposed by Chen et al. [6], Susilo 

et al. [7] proposed perfect concurrent signatures (PCS). 

However, these schemes were unfair because the initiator could 

generate the two keystones independently which enable the 

initiator could bind different ambiguous signature (neither the 

one send to the matching signer) with the one created by the 

matching signer. Therefore, these schemes cannot provide 

perfect ambiguity. To overcome these weak points, Chow and 

Susilo [8] consulted a PCS based on identity authentication. 

Subsequently, asymmetrical concurrent signatures [9], three-

party concurrent signatures [10], multi-party concurrent 

signatures [11], the improved perfect concurrent signature [12], 

and fair concurrent signature scheme based on identity [13] 

were successively proposed. Unfortunate, previous studies [6], 

[7], [9], [10], [12] have found a weakness named message 

substitute attack in signature protocols. Either party can create 

multiple ambiguous signatures containing differing messages 

that can also be bound by the same keystone. Based on these 

observations, the security characteristic of accountability was 

suggested in literature [14]. The characteristic of accountability 

refers to the ability of any third party to confirm the accuracy 

of the signature through the VERIFY algorithm of the 

concurrent signature after the keystone is announced, thereby 

determining the uniqueness of the ambiguous signature. 

Because the improvements proposed in [13] did not achieve the 

security on demand, Zhang et al. [15] recommended including 

the messages that Alice and Bob were to exchange in the 

keystone fix to achieve accountability. However, researchers 

found that both parties did not perform identity authentication 

before communication will suffer identity forgery attack. 

In the section, we will first expound a little more issues 

regarding concurrent signature. In consideration of this, we 
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import self-certification mechanism to strengthen peer identity 

authentication. In Section 2, we review bilinear pairings, 

concurrent signature scheme, and self-certified scheme. These 

techniques and means of security thereof are the focus of this 

paper and are described in Sections 3 and Section 4. Finally, 

Section 5 provides the research conclusion. 

II. LITERATURE REVIEW 

In this section, we firstly explain the concept of bilinear 

pairings and complexity assumption, secondly review 

concurrent signature algorithms. At last, we describe self-

certified scheme. 

A. Bilinear Pairings and Complexity Assumption 

Bilinear pairings have been found to be very useful for 

various applications in cryptography. They were originally 

brought to the cryptographic community by Menezes et al. [16] 

with their MOV attack. This attack reduces the discrete 

logarithm problem on some elliptic or hyperelliptic curves to 

the discrete logarithm problem in a finite field. Joux [17] used 

the pairings to propose the first one round tripartite key 

agreement protocol in 2000. And then a number of 

cryptosystems from pairings have been proposed in 

cryptography. We describe pairings and the related 

mathematics in a more general format here. 

Let 𝐺1 be a cyclic additive group generated by 𝑃 with order 

prime 𝑞, and 𝐺2 be a cyclic multiplicative group with the same 

order 𝑞. A bilinear pairing is a map 𝑒̂：𝐺1 × 𝐺1 → 𝐺2 with the 

following properties： 

(1)Bilinear：For all 𝑃, 𝑄, 𝑅 ∈ 𝐺1, 

𝑒̂(𝑃 + 𝑄, 𝑅) =  𝑒̂(𝑃, 𝑅)  ∙ 𝑒̂(𝑄, 𝑅), 

𝑒̂(𝑃, 𝑄 + 𝑅) =  𝑒̂(𝑃, 𝑄)  ∙ 𝑒̂(𝑃, 𝑅). 
And for all 𝑎, 𝑏 ∈ 𝑍𝑞

∗, 

𝑒̂(𝑎𝑃, 𝑏𝑄) = 𝑒̂(𝑃, 𝑄)𝑎𝑏 = 𝑒̂(𝑎𝑏𝑃, 𝑄) = 𝑒̂(𝑃, 𝑎𝑏𝑄). 

(2)Non-degenerate ： There exists P, Q ∈ 𝐺1  such that 

𝑒̂(𝑃, 𝑄) ≠ 1 

(3)Computable：There is an efficient algorithm to compute 

𝑒̂(𝑃, 𝑄) for all 𝑃, 𝑄 ∈ 𝐺1 

(4)Computational Co-Diffie-Hellman (Co-CDH) problem: 

Given a randomly chosen {𝑃, 𝑎𝑃, 𝑏𝑃}, where 𝑎, 𝑏 ∈ 𝑍𝑞
∗, and a, 

b are unknown, compute 𝑎𝑏𝑃 ∈ 𝐺2 . For every probabilistic 

polynomial-time algorithm A, the advantage of A to solve Co-

CDH-Problem is negligible. 

B. Concurrent Signature 

Concurrent signature schemes were proposed by Chen et al. 

[6] which allow both signing parties to produce and exchange 

ambiguous signatures, with third parties not learning the 

identity of the original signer until an additional keystone is 

announced by one of the two parties. Subsequently, the third 

party can use this information to verify the identity of the 

ambiguous signature signer. 

Zhang et al. [15] improved a concurrent signature scheme 

based on identity in 2011. The concurrent signature scheme is 

composed of five parts: SETUP, KEYGEN, ASIGN, 

AVERIFY, and VERIFY algorithms. 

(1)SETUP: The Key Generation Center (KGC) chooses 

(𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂)  as he above subsection and selects two 

cryptographic hash functions 𝐻: (0,1)∗ → 𝐺1  and 

ℎ: (0,1)∗ → 𝑍𝑞
∗ . KGC selects a random number 𝑠 ∈ 𝑍𝑞

∗ 

and sets 𝑃𝑃𝑢𝑏 = 𝑠 ∙ 𝑃  and publishes system parameters 
{𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂, 𝐻, ℎ, 𝑃𝑃𝑢𝑏} , and keeps 𝑠  as the master 

private key. The algorithm also sets ℳ = 𝒦 = ℱ = 𝑍𝑞
∗. 

(2)KEYGEN: The signer 𝑈I submits his or her identity 𝐼𝐷I 

to KGC. KGC sets 𝑈i
′𝑠  public key 𝑃i = 𝐻i(𝐼𝐷I )  and 

computes the signer’s private key 𝑠𝑖 = 𝑠 ∙ 𝑃i 

(3)ASIGN: The Asign algorithm accepts the following 

parameters {𝑃A, 𝑃B, 𝑠𝐴, 𝑓, 𝑚} , where 𝑃𝐴, 𝑃𝐵  are public 

keys, 𝑠𝐴 is the private key associated with 𝑃A, and 𝑚 ∈ ℳ 

is the message. The initial signer randomly chooses a key 

stone 𝑘 ∈ 𝒦  and α𝐴 ∈ 𝑍𝑞
∗ . This algorithm performs the 

following parameter calculations: 

(a) 𝛽1 = 𝑒̂(𝑃, 𝑃𝑃𝑢𝑏)α𝐴  

(b) 𝛽2 = ℎ(𝑒̂(𝑃𝑃𝑢𝑏 , 𝑃𝐵)α𝐴) 

(c) c = 𝑚𝐴⨁𝛽2 

(d) 𝑓 = ℎ(𝑘 ∥ 𝛽1 ∥ 𝑐) ∈ ℱ 

(e) 𝑆 = α𝐴 ∙ 𝑃𝑃𝑢𝑏 − 𝑓 ∙ 𝑥𝐴 

(f)Outputs 𝜎𝐴 = ASIGN (𝑃𝐴 , 𝑃𝐵 , 𝑥𝐴, 𝑓, 𝑚𝐴)  as the 

ambiguous signature. 

(4)AVERIFY: The Averify algorithm accepts the following 

parameters {𝑚, 𝜎, 𝑃𝐴 , 𝑃𝐵 , 𝑃𝑃𝑢𝑏} , and checks whether the 

following parameter calculations holds with equality: 

(a) 𝛽1 = 𝑒̂(𝑃, 𝑆)𝑒̂(𝑃𝑃𝑢𝑏 , 𝑃𝐴)𝑓 

(b) 𝛽2 = ℎ(𝑒̂(𝑆, 𝑃𝐵)𝑒̂(𝑃𝐴, 𝑆𝐵)𝑓) 

(c) 𝑚𝐴 = 𝑐⨁𝛽2 

If true, it output “accept”; otherwise, it output “reject”. 

(5)VERIFY: The Verify algorithm accepts the following 

parameters {𝑘, 𝑚, 𝜎, 𝑃𝐴, 𝑃𝐵 , 𝑃𝑃𝑢𝑏}. The algorithm verifies 

whether the keystone 𝑘 is valid. If the output is accepted, 

then VERIFY outputs “accept”. If not, VERIFY outputs 

“reject.” 

C. Self-Certified 

A sophisticated approach, first introduced by Girault [18], is 

called self-certified public key (SCPK), which can be regarded 

as an intermediate between the identity-based approaches and 

the traditional PKI approaches. Using a RSA cryptosystem a 

user chooses his or her private key, computes the corresponding 

public key, and gives it to a certificate authority. Then the 

certificate authority computes certificate parameters for the 

user, which satisfies a computationally unforgeable relationship 

with the public key and the identity of the user. A verifier can 

compute the public key from the identity and the certificate 

parameters. In 1997, Saeednia [19] successfully combined 

those merits with the inherency in both the ID-based and the 

self-certified systems. However, Wu et al. [20] showed that the 

original version of Saeednia’s scheme [19] is not secure enough 

against withstanding the impersonated attack. Subsequently, 

Saeednia [21] further proved that it is possible to make the 

attack ineffective by taking additional precautions. The latter 

resulting model presents great loss of the merits compared to 

the original model and has no longer to meet the primary 

contribution of the self-certified notion. Tsaur [22] extended 
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Girault’s works to ECC-based cryptosystems which are quite 

suitable for electronic transactions. A main problem of SCPK 

schemes is that they only provide implicit authentication, i.e., 

the validity of a SCPK is verified only after a successful 

communication. Another characteristic of the proposed self-

certified signature scheme is based on bilinear pairings [23]. 

The self-certified signature scheme is composed of four parts: 

KeyGen, Extract, Sign, and Verify. 

(1)KeyGen: KGC chooses {𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂}  as he above 

subsection and selects a random number 𝑠 ∈ 𝑍𝑞
∗ and sets 

𝑃𝑃𝑢𝑏 = 𝑠 ∙ 𝑃 as its public key. It selects two cryptographic 

hash functions 𝐻: (0,1)∗ → 𝐺1  and ℎ: (0,1)∗ → 𝑍𝑞
∗ . Each 

client given identity 𝐼𝐷 ∈ (0,1)∗, picks a random number 

𝑥𝐼𝐷 ∈ 𝑍𝑞
∗  as its partial private key and sets 𝑌𝐼𝐷 = 𝑥𝐼𝐷 ∙ 𝑃 

as its partial public key. KGC publishes system 

parameters {𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂, 𝐻, ℎ, 𝑃𝑃𝑢𝑏}, and keeps 𝑠 as the 

master private key. 

(2)EXTRACT: Each client sends (𝐼𝐷, 𝑌𝐼𝐷 )  securely to 

KGC, after authenticating himself to KGC. KGC 

computes 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷) ∈ 𝐺1 , and sets the 

partial private key 𝑑𝐼𝐷 = 𝑠 ∙ 𝐻𝐼𝐷 . Then KGC choose a 

random number 𝑟𝐼𝐷 ∈ 𝑍𝑞
∗  and computes 𝑈 = 𝑟𝐼𝐷 ∙ 𝑃, 𝑉 =

𝑟𝐼𝐷 ∙ 𝑌𝐼𝐷 + 𝑑𝐼𝐷 . Finally KGC sends (𝑈, 𝑉), to the client 

over a public channel. 

The client first recovers 𝑑𝐼𝐷 = 𝑉 − 𝑥𝐼𝐷 ∙ 𝑈 . Then the 

client verifies 𝑑𝐼𝐷 by checking the following equations: 

(a) 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷) 

(b) 𝑒̂(𝑑𝐼𝐷 , 𝑃) =? 𝑒̂(𝐻𝐼𝐷 , 𝑃𝑃𝑢𝑏) 

Thus the client obtains his actual private key (𝑥𝐼𝐷 , 𝑑𝐼𝐷). 

Hence, the certificate of the actual public key is used as 

the private key for signing. 

(3)SIGN: To sign a message 𝑀 , the signer A randomly 

chooses a integer 𝑘 ∈ 𝑍𝑞
∗ and computes: 

(a) 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷) 

(b) 𝑣 = 𝑒̂(𝑘 ∙ 𝐻𝐼𝐷 , 𝑃) 

(c) 𝑓 = F(𝑀, 𝑣, 𝐻𝐼𝐷) 

(d) 𝑉 = 𝑘 ∙ 𝐻𝐼𝐷 + 𝑓 ∙ 𝑥𝐼𝐷 ∙ 𝐻𝐼𝐷 + 𝑓2 ∙ 𝑑𝐼𝐷 

Then the signer A sends the signature (𝑓, V) together with 

the public key 𝑃𝑃𝑢𝑏 of the certificate authority, its partial 

public key 𝑃𝐼𝐷 and identifier 𝐼𝐷 to a verifier B. 

(4)VERIFY: To verify the signature (𝑓, V), the verifier B 

requests (𝑃𝑃𝑢𝑏 , 𝐼𝐷, 𝑌𝐼𝐷) and computes: 

(a) 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷) 

(b) 𝑣′ = 𝑒̂(𝑉, P) ∙ 𝑒̂(−𝐻𝐼𝐷 , 𝑓 ∙ 𝑌𝐼𝐷 + 𝑓2 ∙ 𝑃𝑃𝑢𝑏) 

Finally, the verifier B checks the equation: 

(c) 𝑓 = 𝑒̂(𝑀, 𝑣′, 𝐻𝐼𝐷) 

Because: 
(d) 𝑒̂(𝑉, P) = 𝑣′ ∙ 𝑒̂(𝐻𝐼𝐷 , 𝑓 ∙ 𝑌𝐼𝐷 + 𝑓2 ∙ 𝑃𝑃𝑢𝑏), 

𝑣′ = 𝑒̂(𝑉, P) ∙ 𝑒̂(−𝐻𝐼𝐷 , 𝑓 ∙ 𝑌𝐼𝐷 + 𝑓2 ∙ 𝑃𝑃𝑢𝑏) = 𝑣 

Thus F(𝑀, 𝑣′, 𝐻𝐼𝐷) = F(𝑀, 𝑣, 𝐻𝐼𝐷) = 𝑓 

Hence, if the two clients A and B follow this protocol, the 

verifier B will always accept the signature (𝑓, V) and be 

convinced of the authenticity of the partial public key of 

the signer A. 

III. DESIGN OF CONCURRENT SIGNATURE METHOD 

We indicate that the existence of the network is subject to 

security concerns involving identity management, peer 

authentication, personal privacy and so forth. Particularly, 

identity management and peer authentication are flawed with 

unauthorized system access rights and disruption actions. In 

regard to this we enhance identity authentication mechanism 

and prevent forged identity attack by introducing of a self-

certified scheme. In this section further proposes a concurrent 

signature based on bilinear pairings and self-certified scheme. 

This scheme consists of five phase: the initial phase, the key 

generation phase, the authentication phase, the signature sign 

and verify phase, and the verify phase. The overall operation 

sequence proposed in this study is shown in Fig. 1. Table 1 is 

the definitions of the given notations. Different phases are 

stared as follows.  
Alice Bob KGC

Register and get public key

Register and get public key

Authenticate

Authenticate

Send ambiguous signature and 

encrypt message to Bob

Send ambiguous signature and 

encrypt message to Alice

Confirm that the signature is 

verified using the AVERIFY 

algorithm and decrypt the 

message

Confirm that the signature is 

verified using the AVERIFY 

algorithm and decrypt the message

Public the key stone

 

Fig 1.  Diagram of the overall operation sequence  

TABLE I  
DESCRIPTION OF NOTATIONS USED IN THE SYSYTEM 

Notation Description 

𝐺1 A cyclic additive group 

𝐺2 A cyclic multiplicative group 

𝑒̂ A bilinear pairing：𝐺1 × 𝐺1 → 𝐺2 

𝑃 Base point of the elliptical curve 

𝑞 Order of 𝐺1 and 𝐺2 

𝑠 The master secret key of the system 

KGC Key generation center 

𝑃𝑃𝑢𝑏 KGC’s public key 

𝐻() One way hash function: (0,1)∗ → 𝐺1 

ℎ1()、ℎ2()、ℎ3() One way hash function: (0,1)∗ → 𝑍𝑞
∗. 

𝐼𝐷𝐴、𝐼𝐷𝐵 The user’s identity of Alice and Bob 

𝑥𝐴1、𝑥𝐴2 Random value selected by Alice 

𝑄𝐴、𝑄𝐵 Alice’s and Bob’s public key 

𝐷𝐴 Alice’s partial private key 

𝑅𝐴 Alice’s private key 

α𝐴、α𝐵 Random value selected by Alice and Bob 

𝑘 Keystone  

𝜎𝐴、𝜎𝐵 Ambiguous signature of Alice and Bob 

𝑚𝐴, 𝑚𝐵 Message of Alice and Bob 
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A. Initial Phase 

The key generation center (KGC) generates 𝐺1, 𝐺2 of prime 

order 𝑞 , 𝐺1  is a cyclic additive group, 𝐺2  is a cyclic 

multiplicative group, 𝑃 ∈ 𝐺1 is a generator. Let 𝑒̂：𝐺1 × 𝐺1 →
𝐺2 is a bilinear pairing. 

KGC selects the parameter 𝑠 ∈ 𝑍𝑞
∗ as the master secret key of 

the system and computers the public key 

𝑃𝑃𝑢𝑏 = 𝑠 ∙ 𝑃.  (3-

1) 

After that KGC defines four secure one-way hash functions: 

𝐻: (0,1)∗ → 𝐺1 and ℎ1、ℎ2、ℎ3: (0,1)∗ → 𝑍𝑞
∗. 

The public system parameters are 

{𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂, 𝐻, ℎ1, ℎ2, ℎ3, 𝑃𝑃𝑢𝑏} 

B. Key Generation Phase 

(a)Alice 𝐼𝐷𝐴 selects a secure value 𝑥𝐴1 ∈ 𝑍𝑞
∗ , computes 

𝑌𝐴 = 𝑥𝐴1 ∙ 𝑃  (3-

2) 

Alice keeps the 𝑥𝐴1 secret and then sends the 𝐼𝐷𝐴 and 𝑌𝐴 

to KGC. 

(b)KGC computers Alice’s public key 𝐻𝐴 and partial private 

key 𝐷𝐴 through the following equations: 

𝑄𝐴 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷𝐴 ∥ 𝑌𝐴) (3-

3) 
𝐷𝐴 = 𝑠 ∙ 𝑄𝐴    (3-

4) 
(c) KGC selects a secure value 𝑟 ∈ 𝑍𝑞

∗, and computes 

𝑈 = 𝑟 ∙ 𝑃 (3-

5) 
𝑉 = 𝐷𝐴 + 𝑟 ∙ 𝑌𝐴 (3-

6) 
KGC sends the 𝑈 and 𝑉 to Alice. 

(d) After receiving 𝑈 and 𝑉, Alice recovers 𝐷𝐴 by 

computing 

𝐷𝐴 = 𝑉 − 𝑥𝐴1 ∙ 𝑈 (3-

7) 
Then Alice verifies 𝐷𝐴 by checking following equations: 

𝑄𝐴 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷𝐴 ∥ 𝑌𝐴) (3-

8) 
𝑒̂(𝐷𝐴 , 𝑃) =? 𝑒̂(𝐻𝐴 , 𝑃𝑃𝑢𝑏) (3-

9) 
If it holds, Alice receives (𝑥𝐴1, 𝐷𝐴) as her actual private key. 

(e) Alice randomly chooses a integer 𝑥𝐴2 ∈ 𝑍𝑞
∗ , and 

computes: 

𝑣 = 𝑒̂(𝑥𝐴2 ∙ 𝑄𝐴, 𝑃) (3-

10) 

𝑤 = ℎ1(𝑣 ∥ 𝑄𝐴) (3-

11) 
𝑍 = 𝑥𝐴2 ∙ 𝑄𝐴 + 𝑤 ∙ 𝑥𝐴1 ∙ 𝑄𝐴 + 𝑤2 ∙ 𝐷𝐴  (3-

12) 
Then Alice sends the signature (𝑤, 𝑍) together with the 

public key 𝑃𝑃𝑢𝑏  of KGC, its partial public key 𝑌𝐴  and 

identifier 𝐼𝐷𝐴 to the verifier Bob. 

C. Authentication Phase 

After Alice and Bob obtain valid identity from KGC. They 

could authenticate each other before transmitting messages. In 

order to verify the signature (𝑤, 𝑍) , Bob requests 

(𝑃𝑃𝑢𝑏 , 𝐼𝐷𝐴 , 𝑌𝐴) and computes 

𝑄𝐴 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷𝐴 ∥ 𝑌𝐴)  (3-

13) 
𝑣′ = 𝑒̂(𝑍, 𝑃) ∙ 𝑒̂(−𝑄𝐴, 𝑤 ∙ 𝑌𝐼𝐷 + 𝑤2 ∙ 𝑃𝑃𝑢𝑏)  (3-

14) 
Finally, Bob checks the equation: 
𝑤 = ℎ1(𝑣′ ∥ 𝑄𝐴) (3-

15) 
Because 
𝑒̂(𝑍, P) = 𝑒̂(𝑥𝐴2 ∙ 𝑄𝐴 + 𝑤 ∙ 𝑥𝐴1 ∙ 𝑄𝐴 + 𝑤2 ∙ 𝐷𝐴, P)  

= 𝑒̂(𝑥𝐴2, P) ∙ 𝑒̂((𝑤 ∙ 𝑥𝐴1 + 𝑤2 ∙ 𝑠) ∙ 𝑄𝐴, P)  

= 𝑣 ∙ 𝑒̂(𝑄𝐴, (𝑤 ∙ 𝑥𝐴1 + 𝑤2 ∙ 𝑠) ∙ P) 
= 𝑣 ∙ 𝑒̂(𝑄𝐴, 𝑤 ∙ 𝑌𝐴 + 𝑤2 ∙ 𝑃𝑃𝑢𝑏) (3-16) 

𝑣′ = 𝑒̂(𝑍, 𝑃) ∙ 𝑒̂(−𝑄𝐴 , 𝑤 ∙ 𝑌𝐼𝐷 + 𝑤2 ∙ 𝑃𝑃𝑢𝑏) = 𝑣 (3-

17) 

D. Signature Sign and Verify Phase 

The initial signer Alice performs the following actions: 

(a) Randomly select a parameter α𝐴 ∈ 𝑍𝑞
∗ , a keystone 𝑘 ∈ 𝐾 

and message 𝑚𝐴 ∈ 𝑀, calculate 

𝛽1 = 𝑒̂(𝑃, 𝑃𝑃𝑢𝑏)α𝐴  (3-

18) 
𝛽2 = ℎ2(𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐵)α𝐴) (3-

19) 
c = 𝑚𝐴⨁𝛽2 (3-

20) 
𝑓 = ℎ3(𝑘 ∥ 𝛽1 ∥ 𝑐) ∈ 𝐹 (3-

21) 
𝑆 = α𝐴 ∙ 𝑃𝑃𝑢𝑏 − 𝑓 ∙ 𝑑𝐴  (3-

22) 
(b) Perform an ambiguous signature 

 𝜎𝐴 = 𝐴𝑆𝐼𝐺𝑁 (𝑄𝐴, 𝑄𝐵 , 𝑑𝐴, 𝑓, 𝑚𝐴)  (3-

23) 
(c) Send 𝜎𝐴, 𝑐, and S to the matching signer Bob. 

After receiving 𝜎𝐴, 𝑐, and S, Bob performs the following 

actions: 

Calculate 𝛽1 = 𝑒̂(𝑃, 𝑆)𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐴)𝑓 . (3-

24) 

Calculate 𝛽2 = ℎ2(𝑒̂(𝑆, 𝑄𝐵)𝑒̂(𝑄𝐴, 𝑆𝐵)𝑓) (3-

25) 

Calculate 𝑚𝐴 = 𝑐⨁𝛽2 (3-

26) 

Confirm that the signature is verified using the 

AVERIFY(𝑚𝐴, 𝜎𝐴, 𝑄𝐴, 𝑄𝐵 , 𝑃𝑃𝑢𝑏).  (3-

27) 

If the verification fails, Bob terminates the agreement. If 

not, Bob performs the following actions: 

(f) Randomly select a parameter α𝐵 ∈ 𝑍𝑞
∗  and 𝑚𝐵 ∈ 𝑀 , 

calculates 

𝛽3 = 𝑒̂(𝑃, 𝑃𝑃𝑢𝑏)𝛼𝐵  (3-

28) 
𝛽4 = ℎ2(𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐴)𝛼𝐵) (3-

29) 
𝑐′ = 𝑚𝐵⨁𝛽4 (3-

30) 



> PST20140930094220O5D< 

 

5 

𝑓′ = ℎ3(𝑓 ∥ 𝛽3 ∥ 𝑐′) ∈ 𝐹 (3-

31) 
𝑆′ = 𝛼𝐵 ∙ 𝑃𝑃𝑢𝑏 − 𝑓′ ∙ 𝑑𝐵  (3-

32) 
(g) Perform 𝜎𝐵 = ASIGN(𝑄𝐴, 𝑄𝐵 , 𝑑𝐵 , 𝑓′, 𝑚𝐵) (3-

33) 

(h) Send 𝜎𝐵, c′, and S′ to the initial signer Alice. 

(i) After receiving the signature, Alice performs the 

following actions: 

Calculate 𝛽3 = 𝑒̂(𝑃, S′)𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐵)𝑓′
 (3-

34) 

Calculate 𝛽4 = ℎ2(𝑒̂(𝑆′, 𝑄𝐴)𝑒̂(𝑄𝐵 , 𝑆𝐴)𝑓′
) (3-

35) 

Calculate 𝑚𝐵 = c′⨁𝛽4 (3-

36) 

(j) Confirm that the signature is verified using the 

AVERIFY(𝑚𝐵 , 𝜎𝐵, 𝑄𝐴 , 𝑄𝐵 , 𝑃𝑃𝑢𝑏)  (3-37) 

(k) Test whether 𝑓′ = ℎ3(𝑓 ∥ 𝛽3 ∥ 𝑐′) is true. If not, Alice 

terminates the protocol. 

(l) If AVERIFY verification is successful, then Alice 

publically releases the  keystone 𝑘 , simultaneously 

binding the concurrent signature 

(𝑚𝐴, 𝜎𝐴, 𝑐, 𝑆, 𝑚𝐵, 𝜎𝐵 , 𝑐′, 𝑆′) into effect. 

E. Publically Verify Phase 

After the keystone 𝑘  is publically released, if 𝑓 = ℎ3(𝑘 ∥
𝛽1 ∥ 𝑐)  and 𝑓′ = ℎ3(𝑓 ∥ 𝛽3 ∥ 𝑐′)  are true, and 

VERIFY (𝑘, 𝑚𝐴, 𝜎𝐴, 𝑐, 𝑆, 𝑚𝐵, 𝜎𝐵 , 𝑐′, 𝑆′)  verification is 

successful, anyone can confirm that the ambiguous signatures 

𝜎𝐴 and 𝜎𝐵 were signed by either Alice or Bob. 

IV. SECURITY ANALYSES 

The security encryption mechanism proposed in this study is 

primarily based on the bilinear pairings, asymmetric encryption 

methods, concurrent signature scheme, and one-way hash 

function to achieve the information security management 

requirements. The proposed mechanism satisfies the 

correctness, ambiguity, unforgeability, fairness, confidentiality, 

non-repudiation, accountability, and self-certified approach 

concurrent signature security requirements recommended by 

Chen et al. [6] and International Organization for Standard. 

Security analysis are explored in the following section. 

A. Correctness 

According to Chen et al. [6], if the scheme passes through the 

ASIGN algorithm and AVERIFY = accept  is true, both the 

message and ambiguous signature are correct. 

Because (3-27) AVERIFY(𝑚𝐴, 𝜎𝐴, 𝑃𝐴, 𝑃𝐵 , 𝑃𝑃𝑢𝑏) = accept , 

and (3-37)  AVERIFY(𝑚𝐵, 𝜎𝐵 , 𝑃𝐴, 𝑃𝐵 , 𝑃𝑃𝑢𝑏) =  accept  is true, 

this study satisfies the correctness requirement. 

B. Ambiguity 

For ambiguous signatures under the concurrent signature 

scheme, third parties are unable to know the original signer of 

an ambiguous signature until the keystone is released by one of 

the two parties. Subsequently, third parties can use the released 

information to verify the signer of the ambiguous signature. 

For the ambiguous signatures of (3-23) and (3-33) in this 

study, because the messages of the two transaction parties 

𝑚𝐴 and  𝑚𝐵  are processed through the one-way no collision 

hash function calculation in (3-19) and (3-29), third parties 

cannot determine the identity of the signer; thus, signature 

ambiguity is achieved. 

C. Unforgeability 

Unforgeability refers to the mechanism that precludes data 

content from being maliciously tampered or altered by third 

parties during data transmission and ensures data integrity and 

accuracy at the receiving end. Regardless the number of packets 

intercepted during transmission, the original ciphertext or 

plaintext data are precluded from deciphering or recovery, 

thereby preventing tampering and forgery. 

In this study, if Bob seeks to produce another ambiguous 

signature for his message 𝑚̅𝐵 , and the forged signature 𝜎𝐵  is 

bound and comes into effect with σ𝐴  after the release of the 

keystone, Bob will fail. The correctness of the forged signature 

(𝜎𝐵, 𝑚̅𝐵)  signed by Bob is subject to VERIFY algorithm 

verification by anyone following the release of the keystone k. 

D. Fairness 

Concurrent signature fairness refers to the ability of anyone 

to confirm that the signatures were signed by Alice and Bob 

following the completion of a protocol. 

This study assumes that Bob is the deceiving party. Because the 

messages of both parties have already been bound in the 

keystone fix of (3-21) 𝑓 = ℎ(k ∥ 𝛽1 ∥ 𝑐)  and (3-31) 𝑓′ =
ℎ(f ∥ 𝛽3 ∥ c′), the false signature signed by Bob is subject to 

VERIFY algorithm verification by anyone following the release 

of the keystone k. 

E. Confidentiality 

Confidentiality refers to the characteristic that information 

may not be obtained by or disclosed to unauthorized 

individuals, entities, or programs. After a message is 

successfully transmitted to the destination, all message 

exchanges are encrypted. 

Using the method proposed in this study, transmitted 

messages are encrypted. Thus, if a malicious third party steals 

the ciphertext (𝑐, 𝑐′), when attempting to decode (3-26) 𝑚𝐴 =
𝑐⨁𝛽2  and (3-36) 𝑚𝐵 = c′⨁𝛽4  the decrypter will face the 

difficult Co-CDH and one-way hash function problem because 

the value of 𝛽2  and 𝛽4  must be deducted from (3-25) 𝛽2 =

ℎ(𝑒̂(𝑆, 𝑃𝐵)𝑒̂(𝑃𝐴 , 𝑆𝐵)𝑓)  and (3-35) 𝛽4 =

ℎ(𝑒̂(𝑆′, 𝑃𝐴)𝑒̂(𝑃𝐵 , 𝑆𝐴)𝑓′
). 

F. Non-repudiation 

Non-repudiation refers to the evidence of an action or event 

that has already occurred, precluding the deniability of the 

action or event. In key management, users can obtain personal 

public and private keys for encryption and decryption 

operations after being verified by the KGC. 

When the concurrent signature protocol is completed and the 

keystone 𝑘 is released, any third party can use the VERIFY 

algorithm to confirm the identity of each signer, thereby 

achieving the characteristic of non-repudiation. 
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G. Accountability 

Accountability requires the signers could convince 

themselves and any third party that the messages signed in the 

ambiguous signature are the unique set generated in one 

protocol run. Any signer could not generate ambiguous 

signature for any messages other than the one he send to other 

signers in his ambiguous signature, which could satisfy the 

VERIFY and AVERIFY algorithm. 

This study, we bind the messages of Alice and Bob to 

keystone. If anyone cheats by a fake message, it cannot pass the 

VERIFY and AVERIFY algorithm. 

H. Identity authentication 

Our scheme introduces a self-certified approach and makes it 

resistant against the forgery attacks. In this certification 

mechanism, each user obtains a valid certificate along with 

corresponding identity information, and holds one session key 

of the participants. The session key ensures users’ 

communication against any possible attacks from the KGC 

collude. Messages sent between the communication users are 

self-certified, and hence, the certificates can be used to verify 

the identities applicable or not. Additionally, the proposed 

measure supports off-line identity. Each user can rely on KGC’s 

public key to reliably verify the authenticity of each participant 

identity. It is effective to avoid untrustworthy KGC abuse of the 

user’s secret key. 

We say that a self-certified scheme is presently counterfeited 

against adaptive chosen message attack if no polynomial 

bounded adversary A has a non-negligible advantage against 

the challenger in the following game: The challenger takes a 

security parameter 𝑟𝐴
′ and runs the setup algorithm. It gives the 

adversary the resulting system parameters and a public key 𝑄𝐴 

of the certificate authority. If an attacker attempts to carry out 

an attack by revealing the private key from the public key of 𝑄𝐴 

then he or she can play the role of 𝑄𝐴 to forge. In case of that, 

the attacker must solve the Co-CDH given by 𝑄𝐴 . Table 2 

presents a summary comparison of various security 

mechanisms for concurrent signature schemes. 

 
TABLE II 

COMPARISON OF SECURITY MECHANISMS OF THE PROPOSED 

SCHEME AND VARIOUS CONCURRENT SIGNATURE SCHEMES 

V. CONCLUSION 

Because the concurrent signature schemes proposed in 

previous literature were all vulnerable to identity forgery attack. 

In this study, we applied the self-certified scheme to achieve the 

mutual authentication between the communication entities and 

proposed a new scheme for preventing such attacks and it can 

provide higher security in Internet where two parties are 

mutually dishonest. Thus, this study prevents medical records 

being stolen, and protect patient privacy. Unless the patient 

publics the keystone, or any third party impossible to know 

medical information. 
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