
> PST20140930094220O5D<

1

1

Abstract—In order that electronic medical records have the

same legal effects as the entity records, electronic signature must

be able to ensure the integrity, identity identification and

repudiation. Although the existing electronic medical records for

made, save modify are norms, the protection of privacy for

patients is still weak. In particular, medical information is passed

through Internet. Once the computer network is under attack, the

whole privacy information will fall into the mire of the crisis.

Therefore, information security increasingly national attention.

Even if more and more companies to provide services through the

Internet, but for services on the Internet, is still a very scruples.

Especially sensitive personal data and financial information

transmitted on the Internet might be stolen, malicious

depredation, forgery attack and so on. It is difficult to establish

security and fair transactions. Therefore fair exchange protocol

make users getting information of each other in a fair way, so

becomes an extensively studied topic in research related to

personal information protection applications. Concurrent

signatures were introduced as an alternative approach to solving

the problem of fair exchange of signatures by Chen et al. in 2004.

In these concurrent signature schemes, two parties can produce

two ambiguous signatures. These signatures bind to their true

signers concurrently only when the keystone is released by one of

the parties. Zhang et al. improved a concurrent signature scheme

based on identity in 2011. However, there is a security problem of

identity authentication mechanism in their scheme. Therefore, we

enhance identity authentication mechanism and prevent forged

identity attack by a self-certified scheme. We propose a concurrent

signature based on bilinear pairings and self-certified scheme.

Index Terms—Bilinear pairings, Concurrent Signature, Fair

Exchange, Self-Certified.

I. INTRODUCTION

ITH the rapid development of the Internet, more and

more information through network to communicate.

Therefore, the existence of the network is subject to security

concerns involving identity management, peer authentication,

personal privacy and so forth. In the study of cryptography, the

fair exchange protocol is attempt to solve this problem so that

untrusted parties can exchange information fairly over the

network. In exchange protocol, fairness means that at the end

of the agreement, each party can obtain the expected items, or

both of them do not obtain any useful information.

Manuscript received October 21, 2014.
P. C. Su is with the Department of Information Management, National

Defense University, Taiwan, R.O.C (e-mail: spc.cg@msa.hinet.net).

C. L. Chang* is with the Department of Information Management, National
Defense University, Taiwan, R.O.C (corresponding author to provide phone:

0982276143; e-mail:xyzheart11@yahoo.com.tw).

Many previous literatures studied the problem of fair

exchange. Specifically, after the concept of optimistic fair

signatures was proposed by Asokan et al. in 1998[1], numerous

studies [2]-[5] have proposed fair exchange schemes that enable

offline trusted third party (TTP). Chen et al. [6] observed that a

fair exchange signature scheme is not required for numerous

applications. They found a mechanism that enables more

conflict resolution without the participation of a TTP, namely,

concurrent signatures. To enhance the anonymity of the

concurrent signature scheme proposed by Chen et al. [6], Susilo

et al. [7] proposed perfect concurrent signatures (PCS).

However, these schemes were unfair because the initiator could

generate the two keystones independently which enable the

initiator could bind different ambiguous signature (neither the

one send to the matching signer) with the one created by the

matching signer. Therefore, these schemes cannot provide

perfect ambiguity. To overcome these weak points, Chow and

Susilo [8] consulted a PCS based on identity authentication.

Subsequently, asymmetrical concurrent signatures [9], three-

party concurrent signatures [10], multi-party concurrent

signatures [11], the improved perfect concurrent signature [12],

and fair concurrent signature scheme based on identity [13]

were successively proposed. Unfortunate, previous studies [6],

[7], [9], [10], [12] have found a weakness named message

substitute attack in signature protocols. Either party can create

multiple ambiguous signatures containing differing messages

that can also be bound by the same keystone. Based on these

observations, the security characteristic of accountability was

suggested in literature [14]. The characteristic of accountability

refers to the ability of any third party to confirm the accuracy

of the signature through the VERIFY algorithm of the

concurrent signature after the keystone is announced, thereby

determining the uniqueness of the ambiguous signature.

Because the improvements proposed in [13] did not achieve the

security on demand, Zhang et al. [15] recommended including

the messages that Alice and Bob were to exchange in the

keystone fix to achieve accountability. However, researchers

found that both parties did not perform identity authentication

before communication will suffer identity forgery attack.

In the section, we will first expound a little more issues

regarding concurrent signature. In consideration of this, we

Design a security concurrent signature scheme

applied to e-commerce

Pin-Chang Su Chia-Lieh Chang*

W

> PST20140930094220O5D<

2

import self-certification mechanism to strengthen peer identity

authentication. In Section 2, we review bilinear pairings,

concurrent signature scheme, and self-certified scheme. These

techniques and means of security thereof are the focus of this

paper and are described in Sections 3 and Section 4. Finally,

Section 5 provides the research conclusion.

II. LITERATURE REVIEW

In this section, we firstly explain the concept of bilinear

pairings and complexity assumption, secondly review

concurrent signature algorithms. At last, we describe self-

certified scheme.

A. Bilinear Pairings and Complexity Assumption

Bilinear pairings have been found to be very useful for

various applications in cryptography. They were originally

brought to the cryptographic community by Menezes et al. [16]

with their MOV attack. This attack reduces the discrete

logarithm problem on some elliptic or hyperelliptic curves to

the discrete logarithm problem in a finite field. Joux [17] used

the pairings to propose the first one round tripartite key

agreement protocol in 2000. And then a number of

cryptosystems from pairings have been proposed in

cryptography. We describe pairings and the related

mathematics in a more general format here.

Let 𝐺1 be a cyclic additive group generated by 𝑃 with order

prime 𝑞, and 𝐺2 be a cyclic multiplicative group with the same

order 𝑞. A bilinear pairing is a map 𝑒̂：𝐺1 × 𝐺1 → 𝐺2 with the

following properties：

(1)Bilinear：For all 𝑃, 𝑄, 𝑅 ∈ 𝐺1,

𝑒̂(𝑃 + 𝑄, 𝑅) = 𝑒̂(𝑃, 𝑅) ∙ 𝑒̂(𝑄, 𝑅),

𝑒̂(𝑃, 𝑄 + 𝑅) = 𝑒̂(𝑃, 𝑄) ∙ 𝑒̂(𝑃, 𝑅).
And for all 𝑎, 𝑏 ∈ 𝑍𝑞

∗,

𝑒̂(𝑎𝑃, 𝑏𝑄) = 𝑒̂(𝑃, 𝑄)𝑎𝑏 = 𝑒̂(𝑎𝑏𝑃, 𝑄) = 𝑒̂(𝑃, 𝑎𝑏𝑄).

(2)Non-degenerate ： There exists P, Q ∈ 𝐺1 such that

𝑒̂(𝑃, 𝑄) ≠ 1

(3)Computable：There is an efficient algorithm to compute

𝑒̂(𝑃, 𝑄) for all 𝑃, 𝑄 ∈ 𝐺1

(4)Computational Co-Diffie-Hellman (Co-CDH) problem:

Given a randomly chosen {𝑃, 𝑎𝑃, 𝑏𝑃}, where 𝑎, 𝑏 ∈ 𝑍𝑞
∗, and a,

b are unknown, compute 𝑎𝑏𝑃 ∈ 𝐺2 . For every probabilistic

polynomial-time algorithm A, the advantage of A to solve Co-

CDH-Problem is negligible.

B. Concurrent Signature

Concurrent signature schemes were proposed by Chen et al.

[6] which allow both signing parties to produce and exchange

ambiguous signatures, with third parties not learning the

identity of the original signer until an additional keystone is

announced by one of the two parties. Subsequently, the third

party can use this information to verify the identity of the

ambiguous signature signer.

Zhang et al. [15] improved a concurrent signature scheme

based on identity in 2011. The concurrent signature scheme is

composed of five parts: SETUP, KEYGEN, ASIGN,

AVERIFY, and VERIFY algorithms.

(1)SETUP: The Key Generation Center (KGC) chooses

(𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂) as he above subsection and selects two

cryptographic hash functions 𝐻: (0,1)∗ → 𝐺1 and

ℎ: (0,1)∗ → 𝑍𝑞
∗ . KGC selects a random number 𝑠 ∈ 𝑍𝑞

∗

and sets 𝑃𝑃𝑢𝑏 = 𝑠 ∙ 𝑃 and publishes system parameters
{𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂, 𝐻, ℎ, 𝑃𝑃𝑢𝑏} , and keeps 𝑠 as the master

private key. The algorithm also sets ℳ = 𝒦 = ℱ = 𝑍𝑞
∗.

(2)KEYGEN: The signer 𝑈I submits his or her identity 𝐼𝐷I

to KGC. KGC sets 𝑈i
′𝑠 public key 𝑃i = 𝐻i(𝐼𝐷I) and

computes the signer’s private key 𝑠𝑖 = 𝑠 ∙ 𝑃i

(3)ASIGN: The Asign algorithm accepts the following

parameters {𝑃A, 𝑃B, 𝑠𝐴, 𝑓, 𝑚} , where 𝑃𝐴, 𝑃𝐵 are public

keys, 𝑠𝐴 is the private key associated with 𝑃A, and 𝑚 ∈ ℳ

is the message. The initial signer randomly chooses a key

stone 𝑘 ∈ 𝒦 and α𝐴 ∈ 𝑍𝑞
∗ . This algorithm performs the

following parameter calculations:

(a) 𝛽1 = 𝑒̂(𝑃, 𝑃𝑃𝑢𝑏)α𝐴

(b) 𝛽2 = ℎ(𝑒̂(𝑃𝑃𝑢𝑏 , 𝑃𝐵)α𝐴)

(c) c = 𝑚𝐴⨁𝛽2

(d) 𝑓 = ℎ(𝑘 ∥ 𝛽1 ∥ 𝑐) ∈ ℱ

(e) 𝑆 = α𝐴 ∙ 𝑃𝑃𝑢𝑏 − 𝑓 ∙ 𝑥𝐴

(f)Outputs 𝜎𝐴 = ASIGN (𝑃𝐴 , 𝑃𝐵 , 𝑥𝐴, 𝑓, 𝑚𝐴) as the

ambiguous signature.

(4)AVERIFY: The Averify algorithm accepts the following

parameters {𝑚, 𝜎, 𝑃𝐴 , 𝑃𝐵 , 𝑃𝑃𝑢𝑏} , and checks whether the

following parameter calculations holds with equality:

(a) 𝛽1 = 𝑒̂(𝑃, 𝑆)𝑒̂(𝑃𝑃𝑢𝑏 , 𝑃𝐴)𝑓

(b) 𝛽2 = ℎ(𝑒̂(𝑆, 𝑃𝐵)𝑒̂(𝑃𝐴, 𝑆𝐵)𝑓)

(c) 𝑚𝐴 = 𝑐⨁𝛽2

If true, it output “accept”; otherwise, it output “reject”.

(5)VERIFY: The Verify algorithm accepts the following

parameters {𝑘, 𝑚, 𝜎, 𝑃𝐴, 𝑃𝐵 , 𝑃𝑃𝑢𝑏}. The algorithm verifies

whether the keystone 𝑘 is valid. If the output is accepted,

then VERIFY outputs “accept”. If not, VERIFY outputs

“reject.”

C. Self-Certified

A sophisticated approach, first introduced by Girault [18], is

called self-certified public key (SCPK), which can be regarded

as an intermediate between the identity-based approaches and

the traditional PKI approaches. Using a RSA cryptosystem a

user chooses his or her private key, computes the corresponding

public key, and gives it to a certificate authority. Then the

certificate authority computes certificate parameters for the

user, which satisfies a computationally unforgeable relationship

with the public key and the identity of the user. A verifier can

compute the public key from the identity and the certificate

parameters. In 1997, Saeednia [19] successfully combined

those merits with the inherency in both the ID-based and the

self-certified systems. However, Wu et al. [20] showed that the

original version of Saeednia’s scheme [19] is not secure enough

against withstanding the impersonated attack. Subsequently,

Saeednia [21] further proved that it is possible to make the

attack ineffective by taking additional precautions. The latter

resulting model presents great loss of the merits compared to

the original model and has no longer to meet the primary

contribution of the self-certified notion. Tsaur [22] extended

> PST20140930094220O5D<

3

Girault’s works to ECC-based cryptosystems which are quite

suitable for electronic transactions. A main problem of SCPK

schemes is that they only provide implicit authentication, i.e.,

the validity of a SCPK is verified only after a successful

communication. Another characteristic of the proposed self-

certified signature scheme is based on bilinear pairings [23].

The self-certified signature scheme is composed of four parts:

KeyGen, Extract, Sign, and Verify.

(1)KeyGen: KGC chooses {𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂} as he above

subsection and selects a random number 𝑠 ∈ 𝑍𝑞
∗ and sets

𝑃𝑃𝑢𝑏 = 𝑠 ∙ 𝑃 as its public key. It selects two cryptographic

hash functions 𝐻: (0,1)∗ → 𝐺1 and ℎ: (0,1)∗ → 𝑍𝑞
∗ . Each

client given identity 𝐼𝐷 ∈ (0,1)∗, picks a random number

𝑥𝐼𝐷 ∈ 𝑍𝑞
∗ as its partial private key and sets 𝑌𝐼𝐷 = 𝑥𝐼𝐷 ∙ 𝑃

as its partial public key. KGC publishes system

parameters {𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂, 𝐻, ℎ, 𝑃𝑃𝑢𝑏}, and keeps 𝑠 as the

master private key.

(2)EXTRACT: Each client sends (𝐼𝐷, 𝑌𝐼𝐷) securely to

KGC, after authenticating himself to KGC. KGC

computes 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷) ∈ 𝐺1 , and sets the

partial private key 𝑑𝐼𝐷 = 𝑠 ∙ 𝐻𝐼𝐷 . Then KGC choose a

random number 𝑟𝐼𝐷 ∈ 𝑍𝑞
∗ and computes 𝑈 = 𝑟𝐼𝐷 ∙ 𝑃, 𝑉 =

𝑟𝐼𝐷 ∙ 𝑌𝐼𝐷 + 𝑑𝐼𝐷 . Finally KGC sends (𝑈, 𝑉), to the client

over a public channel.

The client first recovers 𝑑𝐼𝐷 = 𝑉 − 𝑥𝐼𝐷 ∙ 𝑈 . Then the

client verifies 𝑑𝐼𝐷 by checking the following equations:

(a) 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷)

(b) 𝑒̂(𝑑𝐼𝐷 , 𝑃) =? 𝑒̂(𝐻𝐼𝐷 , 𝑃𝑃𝑢𝑏)

Thus the client obtains his actual private key (𝑥𝐼𝐷 , 𝑑𝐼𝐷).

Hence, the certificate of the actual public key is used as

the private key for signing.

(3)SIGN: To sign a message 𝑀 , the signer A randomly

chooses a integer 𝑘 ∈ 𝑍𝑞
∗ and computes:

(a) 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷)

(b) 𝑣 = 𝑒̂(𝑘 ∙ 𝐻𝐼𝐷 , 𝑃)

(c) 𝑓 = F(𝑀, 𝑣, 𝐻𝐼𝐷)

(d) 𝑉 = 𝑘 ∙ 𝐻𝐼𝐷 + 𝑓 ∙ 𝑥𝐼𝐷 ∙ 𝐻𝐼𝐷 + 𝑓2 ∙ 𝑑𝐼𝐷

Then the signer A sends the signature (𝑓, V) together with

the public key 𝑃𝑃𝑢𝑏 of the certificate authority, its partial

public key 𝑃𝐼𝐷 and identifier 𝐼𝐷 to a verifier B.

(4)VERIFY: To verify the signature (𝑓, V), the verifier B

requests (𝑃𝑃𝑢𝑏 , 𝐼𝐷, 𝑌𝐼𝐷) and computes:

(a) 𝐻𝐼𝐷 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷 ∥ 𝑌𝐼𝐷)

(b) 𝑣′ = 𝑒̂(𝑉, P) ∙ 𝑒̂(−𝐻𝐼𝐷 , 𝑓 ∙ 𝑌𝐼𝐷 + 𝑓2 ∙ 𝑃𝑃𝑢𝑏)

Finally, the verifier B checks the equation:

(c) 𝑓 = 𝑒̂(𝑀, 𝑣′, 𝐻𝐼𝐷)

Because:
(d) 𝑒̂(𝑉, P) = 𝑣′ ∙ 𝑒̂(𝐻𝐼𝐷 , 𝑓 ∙ 𝑌𝐼𝐷 + 𝑓2 ∙ 𝑃𝑃𝑢𝑏),

𝑣′ = 𝑒̂(𝑉, P) ∙ 𝑒̂(−𝐻𝐼𝐷 , 𝑓 ∙ 𝑌𝐼𝐷 + 𝑓2 ∙ 𝑃𝑃𝑢𝑏) = 𝑣

Thus F(𝑀, 𝑣′, 𝐻𝐼𝐷) = F(𝑀, 𝑣, 𝐻𝐼𝐷) = 𝑓

Hence, if the two clients A and B follow this protocol, the

verifier B will always accept the signature (𝑓, V) and be

convinced of the authenticity of the partial public key of

the signer A.

III. DESIGN OF CONCURRENT SIGNATURE METHOD

We indicate that the existence of the network is subject to

security concerns involving identity management, peer

authentication, personal privacy and so forth. Particularly,

identity management and peer authentication are flawed with

unauthorized system access rights and disruption actions. In

regard to this we enhance identity authentication mechanism

and prevent forged identity attack by introducing of a self-

certified scheme. In this section further proposes a concurrent

signature based on bilinear pairings and self-certified scheme.

This scheme consists of five phase: the initial phase, the key

generation phase, the authentication phase, the signature sign

and verify phase, and the verify phase. The overall operation

sequence proposed in this study is shown in Fig. 1. Table 1 is

the definitions of the given notations. Different phases are

stared as follows.
Alice Bob KGC

Register and get public key

Register and get public key

Authenticate

Authenticate

Send ambiguous signature and

encrypt message to Bob

Send ambiguous signature and

encrypt message to Alice

Confirm that the signature is

verified using the AVERIFY

algorithm and decrypt the

message

Confirm that the signature is

verified using the AVERIFY

algorithm and decrypt the message

Public the key stone

Fig 1. Diagram of the overall operation sequence

TABLE I
DESCRIPTION OF NOTATIONS USED IN THE SYSYTEM

Notation Description

𝐺1 A cyclic additive group

𝐺2 A cyclic multiplicative group

𝑒̂ A bilinear pairing：𝐺1 × 𝐺1 → 𝐺2

𝑃 Base point of the elliptical curve

𝑞 Order of 𝐺1 and 𝐺2

𝑠 The master secret key of the system

KGC Key generation center

𝑃𝑃𝑢𝑏 KGC’s public key

𝐻() One way hash function: (0,1)∗ → 𝐺1

ℎ1()、ℎ2()、ℎ3() One way hash function: (0,1)∗ → 𝑍𝑞
∗.

𝐼𝐷𝐴、𝐼𝐷𝐵 The user’s identity of Alice and Bob

𝑥𝐴1、𝑥𝐴2 Random value selected by Alice

𝑄𝐴、𝑄𝐵 Alice’s and Bob’s public key

𝐷𝐴 Alice’s partial private key

𝑅𝐴 Alice’s private key

α𝐴、α𝐵 Random value selected by Alice and Bob

𝑘 Keystone

𝜎𝐴、𝜎𝐵 Ambiguous signature of Alice and Bob

𝑚𝐴, 𝑚𝐵 Message of Alice and Bob

> PST20140930094220O5D<

4

A. Initial Phase

The key generation center (KGC) generates 𝐺1, 𝐺2 of prime

order 𝑞 , 𝐺1 is a cyclic additive group, 𝐺2 is a cyclic

multiplicative group, 𝑃 ∈ 𝐺1 is a generator. Let 𝑒̂：𝐺1 × 𝐺1 →
𝐺2 is a bilinear pairing.

KGC selects the parameter 𝑠 ∈ 𝑍𝑞
∗ as the master secret key of

the system and computers the public key

𝑃𝑃𝑢𝑏 = 𝑠 ∙ 𝑃. (3-

1)

After that KGC defines four secure one-way hash functions:

𝐻: (0,1)∗ → 𝐺1 and ℎ1、ℎ2、ℎ3: (0,1)∗ → 𝑍𝑞
∗.

The public system parameters are

{𝐺1, 𝐺2, 𝑃, 𝑞, 𝑒̂, 𝐻, ℎ1, ℎ2, ℎ3, 𝑃𝑃𝑢𝑏}

B. Key Generation Phase

(a)Alice 𝐼𝐷𝐴 selects a secure value 𝑥𝐴1 ∈ 𝑍𝑞
∗ , computes

𝑌𝐴 = 𝑥𝐴1 ∙ 𝑃 (3-

2)

Alice keeps the 𝑥𝐴1 secret and then sends the 𝐼𝐷𝐴 and 𝑌𝐴

to KGC.

(b)KGC computers Alice’s public key 𝐻𝐴 and partial private

key 𝐷𝐴 through the following equations:

𝑄𝐴 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷𝐴 ∥ 𝑌𝐴) (3-

3)
𝐷𝐴 = 𝑠 ∙ 𝑄𝐴 (3-

4)
(c) KGC selects a secure value 𝑟 ∈ 𝑍𝑞

∗, and computes

𝑈 = 𝑟 ∙ 𝑃 (3-

5)
𝑉 = 𝐷𝐴 + 𝑟 ∙ 𝑌𝐴 (3-

6)
KGC sends the 𝑈 and 𝑉 to Alice.

(d) After receiving 𝑈 and 𝑉, Alice recovers 𝐷𝐴 by

computing

𝐷𝐴 = 𝑉 − 𝑥𝐴1 ∙ 𝑈 (3-

7)
Then Alice verifies 𝐷𝐴 by checking following equations:

𝑄𝐴 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷𝐴 ∥ 𝑌𝐴) (3-

8)
𝑒̂(𝐷𝐴 , 𝑃) =? 𝑒̂(𝐻𝐴 , 𝑃𝑃𝑢𝑏) (3-

9)
If it holds, Alice receives (𝑥𝐴1, 𝐷𝐴) as her actual private key.

(e) Alice randomly chooses a integer 𝑥𝐴2 ∈ 𝑍𝑞
∗ , and

computes:

𝑣 = 𝑒̂(𝑥𝐴2 ∙ 𝑄𝐴, 𝑃) (3-

10)

𝑤 = ℎ1(𝑣 ∥ 𝑄𝐴) (3-

11)
𝑍 = 𝑥𝐴2 ∙ 𝑄𝐴 + 𝑤 ∙ 𝑥𝐴1 ∙ 𝑄𝐴 + 𝑤2 ∙ 𝐷𝐴 (3-

12)
Then Alice sends the signature (𝑤, 𝑍) together with the

public key 𝑃𝑃𝑢𝑏 of KGC, its partial public key 𝑌𝐴 and

identifier 𝐼𝐷𝐴 to the verifier Bob.

C. Authentication Phase

After Alice and Bob obtain valid identity from KGC. They

could authenticate each other before transmitting messages. In

order to verify the signature (𝑤, 𝑍) , Bob requests

(𝑃𝑃𝑢𝑏 , 𝐼𝐷𝐴 , 𝑌𝐴) and computes

𝑄𝐴 = 𝐻(𝑃𝑃𝑢𝑏 ∥ 𝐼𝐷𝐴 ∥ 𝑌𝐴) (3-

13)
𝑣′ = 𝑒̂(𝑍, 𝑃) ∙ 𝑒̂(−𝑄𝐴, 𝑤 ∙ 𝑌𝐼𝐷 + 𝑤2 ∙ 𝑃𝑃𝑢𝑏) (3-

14)
Finally, Bob checks the equation:
𝑤 = ℎ1(𝑣′ ∥ 𝑄𝐴) (3-

15)
Because
𝑒̂(𝑍, P) = 𝑒̂(𝑥𝐴2 ∙ 𝑄𝐴 + 𝑤 ∙ 𝑥𝐴1 ∙ 𝑄𝐴 + 𝑤2 ∙ 𝐷𝐴, P)

= 𝑒̂(𝑥𝐴2, P) ∙ 𝑒̂((𝑤 ∙ 𝑥𝐴1 + 𝑤2 ∙ 𝑠) ∙ 𝑄𝐴, P)

= 𝑣 ∙ 𝑒̂(𝑄𝐴, (𝑤 ∙ 𝑥𝐴1 + 𝑤2 ∙ 𝑠) ∙ P)
= 𝑣 ∙ 𝑒̂(𝑄𝐴, 𝑤 ∙ 𝑌𝐴 + 𝑤2 ∙ 𝑃𝑃𝑢𝑏) (3-16)

𝑣′ = 𝑒̂(𝑍, 𝑃) ∙ 𝑒̂(−𝑄𝐴 , 𝑤 ∙ 𝑌𝐼𝐷 + 𝑤2 ∙ 𝑃𝑃𝑢𝑏) = 𝑣 (3-

17)

D. Signature Sign and Verify Phase

The initial signer Alice performs the following actions:

(a) Randomly select a parameter α𝐴 ∈ 𝑍𝑞
∗ , a keystone 𝑘 ∈ 𝐾

and message 𝑚𝐴 ∈ 𝑀, calculate

𝛽1 = 𝑒̂(𝑃, 𝑃𝑃𝑢𝑏)α𝐴 (3-

18)
𝛽2 = ℎ2(𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐵)α𝐴) (3-

19)
c = 𝑚𝐴⨁𝛽2 (3-

20)
𝑓 = ℎ3(𝑘 ∥ 𝛽1 ∥ 𝑐) ∈ 𝐹 (3-

21)
𝑆 = α𝐴 ∙ 𝑃𝑃𝑢𝑏 − 𝑓 ∙ 𝑑𝐴 (3-

22)
(b) Perform an ambiguous signature

 𝜎𝐴 = 𝐴𝑆𝐼𝐺𝑁 (𝑄𝐴, 𝑄𝐵 , 𝑑𝐴, 𝑓, 𝑚𝐴) (3-

23)
(c) Send 𝜎𝐴, 𝑐, and S to the matching signer Bob.

After receiving 𝜎𝐴, 𝑐, and S, Bob performs the following

actions:

Calculate 𝛽1 = 𝑒̂(𝑃, 𝑆)𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐴)𝑓 . (3-

24)

Calculate 𝛽2 = ℎ2(𝑒̂(𝑆, 𝑄𝐵)𝑒̂(𝑄𝐴, 𝑆𝐵)𝑓) (3-

25)

Calculate 𝑚𝐴 = 𝑐⨁𝛽2 (3-

26)

Confirm that the signature is verified using the

AVERIFY(𝑚𝐴, 𝜎𝐴, 𝑄𝐴, 𝑄𝐵 , 𝑃𝑃𝑢𝑏). (3-

27)

If the verification fails, Bob terminates the agreement. If

not, Bob performs the following actions:

(f) Randomly select a parameter α𝐵 ∈ 𝑍𝑞
∗ and 𝑚𝐵 ∈ 𝑀 ,

calculates

𝛽3 = 𝑒̂(𝑃, 𝑃𝑃𝑢𝑏)𝛼𝐵 (3-

28)
𝛽4 = ℎ2(𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐴)𝛼𝐵) (3-

29)
𝑐′ = 𝑚𝐵⨁𝛽4 (3-

30)

> PST20140930094220O5D<

5

𝑓′ = ℎ3(𝑓 ∥ 𝛽3 ∥ 𝑐′) ∈ 𝐹 (3-

31)
𝑆′ = 𝛼𝐵 ∙ 𝑃𝑃𝑢𝑏 − 𝑓′ ∙ 𝑑𝐵 (3-

32)
(g) Perform 𝜎𝐵 = ASIGN(𝑄𝐴, 𝑄𝐵 , 𝑑𝐵 , 𝑓′, 𝑚𝐵) (3-

33)

(h) Send 𝜎𝐵, c′, and S′ to the initial signer Alice.

(i) After receiving the signature, Alice performs the

following actions:

Calculate 𝛽3 = 𝑒̂(𝑃, S′)𝑒̂(𝑃𝑃𝑢𝑏 , 𝑄𝐵)𝑓′
 (3-

34)

Calculate 𝛽4 = ℎ2(𝑒̂(𝑆′, 𝑄𝐴)𝑒̂(𝑄𝐵 , 𝑆𝐴)𝑓′
) (3-

35)

Calculate 𝑚𝐵 = c′⨁𝛽4 (3-

36)

(j) Confirm that the signature is verified using the

AVERIFY(𝑚𝐵 , 𝜎𝐵, 𝑄𝐴 , 𝑄𝐵 , 𝑃𝑃𝑢𝑏) (3-37)

(k) Test whether 𝑓′ = ℎ3(𝑓 ∥ 𝛽3 ∥ 𝑐′) is true. If not, Alice

terminates the protocol.

(l) If AVERIFY verification is successful, then Alice

publically releases the keystone 𝑘 , simultaneously

binding the concurrent signature

(𝑚𝐴, 𝜎𝐴, 𝑐, 𝑆, 𝑚𝐵, 𝜎𝐵 , 𝑐′, 𝑆′) into effect.

E. Publically Verify Phase

After the keystone 𝑘 is publically released, if 𝑓 = ℎ3(𝑘 ∥
𝛽1 ∥ 𝑐) and 𝑓′ = ℎ3(𝑓 ∥ 𝛽3 ∥ 𝑐′) are true, and

VERIFY (𝑘, 𝑚𝐴, 𝜎𝐴, 𝑐, 𝑆, 𝑚𝐵, 𝜎𝐵 , 𝑐′, 𝑆′) verification is

successful, anyone can confirm that the ambiguous signatures

𝜎𝐴 and 𝜎𝐵 were signed by either Alice or Bob.

IV. SECURITY ANALYSES

The security encryption mechanism proposed in this study is

primarily based on the bilinear pairings, asymmetric encryption

methods, concurrent signature scheme, and one-way hash

function to achieve the information security management

requirements. The proposed mechanism satisfies the

correctness, ambiguity, unforgeability, fairness, confidentiality,

non-repudiation, accountability, and self-certified approach

concurrent signature security requirements recommended by

Chen et al. [6] and International Organization for Standard.

Security analysis are explored in the following section.

A. Correctness

According to Chen et al. [6], if the scheme passes through the

ASIGN algorithm and AVERIFY = accept is true, both the

message and ambiguous signature are correct.

Because (3-27) AVERIFY(𝑚𝐴, 𝜎𝐴, 𝑃𝐴, 𝑃𝐵 , 𝑃𝑃𝑢𝑏) = accept ,

and (3-37) AVERIFY(𝑚𝐵, 𝜎𝐵 , 𝑃𝐴, 𝑃𝐵 , 𝑃𝑃𝑢𝑏) = accept is true,

this study satisfies the correctness requirement.

B. Ambiguity

For ambiguous signatures under the concurrent signature

scheme, third parties are unable to know the original signer of

an ambiguous signature until the keystone is released by one of

the two parties. Subsequently, third parties can use the released

information to verify the signer of the ambiguous signature.

For the ambiguous signatures of (3-23) and (3-33) in this

study, because the messages of the two transaction parties

𝑚𝐴 and 𝑚𝐵 are processed through the one-way no collision

hash function calculation in (3-19) and (3-29), third parties

cannot determine the identity of the signer; thus, signature

ambiguity is achieved.

C. Unforgeability

Unforgeability refers to the mechanism that precludes data

content from being maliciously tampered or altered by third

parties during data transmission and ensures data integrity and

accuracy at the receiving end. Regardless the number of packets

intercepted during transmission, the original ciphertext or

plaintext data are precluded from deciphering or recovery,

thereby preventing tampering and forgery.

In this study, if Bob seeks to produce another ambiguous

signature for his message 𝑚̅𝐵 , and the forged signature 𝜎𝐵 is

bound and comes into effect with σ𝐴 after the release of the

keystone, Bob will fail. The correctness of the forged signature

(𝜎𝐵, 𝑚̅𝐵) signed by Bob is subject to VERIFY algorithm

verification by anyone following the release of the keystone k.

D. Fairness

Concurrent signature fairness refers to the ability of anyone

to confirm that the signatures were signed by Alice and Bob

following the completion of a protocol.

This study assumes that Bob is the deceiving party. Because the

messages of both parties have already been bound in the

keystone fix of (3-21) 𝑓 = ℎ(k ∥ 𝛽1 ∥ 𝑐) and (3-31) 𝑓′ =
ℎ(f ∥ 𝛽3 ∥ c′), the false signature signed by Bob is subject to

VERIFY algorithm verification by anyone following the release

of the keystone k.

E. Confidentiality

Confidentiality refers to the characteristic that information

may not be obtained by or disclosed to unauthorized

individuals, entities, or programs. After a message is

successfully transmitted to the destination, all message

exchanges are encrypted.

Using the method proposed in this study, transmitted

messages are encrypted. Thus, if a malicious third party steals

the ciphertext (𝑐, 𝑐′), when attempting to decode (3-26) 𝑚𝐴 =
𝑐⨁𝛽2 and (3-36) 𝑚𝐵 = c′⨁𝛽4 the decrypter will face the

difficult Co-CDH and one-way hash function problem because

the value of 𝛽2 and 𝛽4 must be deducted from (3-25) 𝛽2 =

ℎ(𝑒̂(𝑆, 𝑃𝐵)𝑒̂(𝑃𝐴 , 𝑆𝐵)𝑓) and (3-35) 𝛽4 =

ℎ(𝑒̂(𝑆′, 𝑃𝐴)𝑒̂(𝑃𝐵 , 𝑆𝐴)𝑓′
).

F. Non-repudiation

Non-repudiation refers to the evidence of an action or event

that has already occurred, precluding the deniability of the

action or event. In key management, users can obtain personal

public and private keys for encryption and decryption

operations after being verified by the KGC.

When the concurrent signature protocol is completed and the

keystone 𝑘 is released, any third party can use the VERIFY

algorithm to confirm the identity of each signer, thereby

achieving the characteristic of non-repudiation.

> PST20140930094220O5D<

6

G. Accountability

Accountability requires the signers could convince

themselves and any third party that the messages signed in the

ambiguous signature are the unique set generated in one

protocol run. Any signer could not generate ambiguous

signature for any messages other than the one he send to other

signers in his ambiguous signature, which could satisfy the

VERIFY and AVERIFY algorithm.

This study, we bind the messages of Alice and Bob to

keystone. If anyone cheats by a fake message, it cannot pass the

VERIFY and AVERIFY algorithm.

H. Identity authentication

Our scheme introduces a self-certified approach and makes it

resistant against the forgery attacks. In this certification

mechanism, each user obtains a valid certificate along with

corresponding identity information, and holds one session key

of the participants. The session key ensures users’

communication against any possible attacks from the KGC

collude. Messages sent between the communication users are

self-certified, and hence, the certificates can be used to verify

the identities applicable or not. Additionally, the proposed

measure supports off-line identity. Each user can rely on KGC’s

public key to reliably verify the authenticity of each participant

identity. It is effective to avoid untrustworthy KGC abuse of the

user’s secret key.

We say that a self-certified scheme is presently counterfeited

against adaptive chosen message attack if no polynomial

bounded adversary A has a non-negligible advantage against

the challenger in the following game: The challenger takes a

security parameter 𝑟𝐴
′ and runs the setup algorithm. It gives the

adversary the resulting system parameters and a public key 𝑄𝐴

of the certificate authority. If an attacker attempts to carry out

an attack by revealing the private key from the public key of 𝑄𝐴

then he or she can play the role of 𝑄𝐴 to forge. In case of that,

the attacker must solve the Co-CDH given by 𝑄𝐴 . Table 2

presents a summary comparison of various security

mechanisms for concurrent signature schemes.

TABLE II

COMPARISON OF SECURITY MECHANISMS OF THE PROPOSED

SCHEME AND VARIOUS CONCURRENT SIGNATURE SCHEMES

V. CONCLUSION

Because the concurrent signature schemes proposed in

previous literature were all vulnerable to identity forgery attack.

In this study, we applied the self-certified scheme to achieve the

mutual authentication between the communication entities and

proposed a new scheme for preventing such attacks and it can

provide higher security in Internet where two parties are

mutually dishonest. Thus, this study prevents medical records

being stolen, and protect patient privacy. Unless the patient

publics the keystone, or any third party impossible to know

medical information.

REFERENCES

[1] N. Asokan, V. Shoup, and M Waidner, “Optimistic fair exchange of

signatures,” EUROCRYPT－LNCS 1403, 1998, pp. 591-606.

[2] F. Bao, R. H. Deng, and W. Mao, “Efficient and practical fair exchange

protocols with off-line TTP,” IEEE Symposium on Security and Privacy,
1998, pp. 77-85.

[3] J. Garay, M. Jakobsson, and P. MacKenzie, “Abuse-free optimistic

contract signing,” CRYPTO－LNCS 1666, 1999, pp. 449-466.

[4] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of

digital signatures,” IEEE Journal on SelectedAreas in Communication,

vol. 18, no. 4, 2000, pp. 593-610.
[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and

variably encrypted signatures from bilinear maps,” EUROCRYPT－

LNCS 2656, 2003, pp. 416-432.
[6] L. Chen, C. Kudla, and K.G. Paterson, “Concurrent signatures,”

EUROCRYPT－LNCS 3027, 2004, pp. 287-305.

[7] W. Susilo, Y. Mu, and F. Zhang, “Perfect concurrent signature
schemes,” ICICS, LNCS 3269, 2004, pp. 14-26.

[8] S. Chow, and W. Susilo, “Generic construction of (identity-based)

perfect concurrent signatures,” 7th International Conference on
Information and Communications Security, LNCS 3783, 2005, pp. 194-

206.

[9] K. Nguyen, “Asymmetric Concurrent Signatures,” ICICS, LNCS 3783,
2005, pp. 181-193.

[10] W. Susilo, and Y. Mu, “Tripartite concurrent signatures,” IFIP/SEC,

2005, pp. 425–441.
[11] D. Tonien, W. Susilo, and R.S. Naini, “Multi-party Concurrent

Signatures,” ISC, LNCS 4176, 2006, pp. 131-145.

[12] W.G. Lin, B. Feng, and Z.J. Ying, “The fairness of perfect concurrent
signatures,” ICICS, LNCS 4307, 2006, pp. 435-451.

[13] X.F. Huang, and L.C. Wang, “A fair concurrent signature scheme based

on identity,” 2nd International Conference on High-performance
Computing and Applications LNCS 5938, 2010, pp. 198-205.

[14] L. Yunfeng, H. Dake, and L. Xianhui, “Accountability of Perfect

Concurrent Signature,” International Conference on Computer and
Electrical Engineering, 2008, pp. 773-7.

[15] Z. Zhang, and Xu. Shuo, “Cryptanalysis and Improvement of a

Concurrent Signature Scheme Based on Identity,” 2nd International
Conference on Software Engineering and Service Science, 2011, pp.

453-6.

[16] A. Menezes, S. Vanstone, and T, Okamoto, “Reducing elliptic curve
logarithms to logarithms in a finite field,” IEEE Transactions on

Information Theory, vol. 39, no. 5, 1993, pp. 1639-46.

[17] A. Joux, “A one round protocol for tripartite Diffie–Hellman,” 4th
International symposium on algorithmic number theory, LNCS 1838,

2000, pp. 385-94.

[18] M. Girault, “Self-certified public keys,” EUROCRYPT－LNCS 547,

1991, pp. 490-497.

[19] S. Saeednia, “Identity-based and self-certified key exchange protocols,”

Proceedings of Second Australasian Conference on Information Security
and Privacy, LNCS 1270, 1997, pp. 303-313.

Algorithm
Chen
et al.,

2004

Wang
et al.,

2010

Hang
et al.

2010

Zhang
et al.

2011

This

study

Correctness V V V V V

Ambiguity V V V V V

Unforgeability V V X V V

Fairness V V V V V

Confidentiality X X V V V

Non-
repudiation

X X V V V

Accountability X V V V V

Identity

 authentication
X X X X V

> PST20140930094220O5D<

7

[20] T.C. Wu, Y.S. Chang, and T.Y. Lin, “Improvement of Saeednia’s self-

certified key,” Electronics Letters, vol. 34, no. 17, 1998, pp. 1094-1095.
[21] S. Saeednia, “A note on Girault’s self-certified model,” Information

Processing Letters, vol. 86, no. 6, 2003, pp. 323-327.

[22] W.J. Tsaur, “Several security schemes constructed using ECC-based
self-certified public key cryptosystems,” Applied Mathematics and

Computation, vol. 168, no. 1, 2005, pp. 447-464.

[23] Z. Shao, “Self-certified signature scheme from pairings,” Journal of
Systems and Software, vol. 80, no. 3, 2007, pp. 388-395.

