
An Architecture-oriented Model for Requirements Analysis and
Specification

Pingwen Yu

Department of Information
Management,Shu-Zen College
of Medicine and Management

Fushiau Li
Research and Development

Department, SUN NET
Technology Corporation Ltd

William S. Chao
Taiwan Chapter of

Association of Enterprise
Architects

Abstract

For requirements being able to convey the

essential properties of a system, an ideal model for

requirements analysis and specification should be

based on a set of interacting components forming an

integrated whole of that system’s structure and

behavior views which sustains the essential properties

of a system. Current models for requirements analysis

and specification such as data-oriented,

control-oriented, function-oriented, and

object-oriented, more or less, fail to grasp some

essential properties of the system. In this paper, we

present an architecture-oriented model for

requirements analysis and specification named SBC

architecture which helps analysts specify the

requirements based on a set of interacting

components forming an integrated whole of the

system’s structure and behavior views. SBC

architecture is a perfect model for requirements

analysis and specification because of its being able to

convey the essential properties of any system.

Keywords: architecture-oriented model, requirements
analysis and specification, SBC architecture

1. Introduction

In the simplest terms, the system development
process consists of three activities: the analysis and
specification of a requirement, the design of a
solution, and the implementation of the solution.
Requirements analysis and specification employ a
model to analyze and specify various stakeholders’
perception of their need and understanding of the
solution. That is, a model for requirements analysis
and specification is besought to convey the essential
properties that the system must satisfy.

A system is complex that it consists of multiple
views such as structure view, behavior view, input
data view, output data view, business view,
application view, technology view, function view,
timing view, concurrency view, control view,
management view, engineering view, etc. Among the

above multiple views, the structure and behavior
views are perceived as the two prominent ones. The
structure view focuses on the system structure which
is described by components and their composition
while the behavior view concentrates on the system
behavior which involves interactions among external
environment’s actors and components. Accordingly,
we define a system as a set of interacting components
forming an integrated whole of that system’s multiple
views [Bert69]. Components are sometimes labeled
as parts, entities, objects, and structure elements
[Chao09, Chao11]. Since structure and behavior
views are the two most distinguished ones among
multiple views, integrating the structure and behavior
views becomes the most appropriate method for
integrating multiple views of a system as shown in
Figure 1. We thereat redefine a system as a set of
interacting components forming an integrated whole
of the system’s structure and behavior views. Based
on this definition of a system, we conclude that an
integrated structure and behavior views sustains the
essential properties of a system.

Figure 1 Structure and Behavior Views Integration Facilitates Multiple Views Integration

Multiple Views
Integration

Structure and Behavior
Views Integration

For requirements being able to convey the

essential properties of a system, an ideal model for
requirements analysis and specification should be
based on a set of interacting components forming an
integrated whole of that system’s structure and
behavior views. The purpose of this paper is to
explore this principle in depth. The whole paper is
organized as follows. Section 1 is the introduction.
Current models such as data-oriented,
control-oriented, function-oriented, and
object-oriented for requirements analysis and
specification failing to specify some essential
properties of the system are discussed in Section 2.
Section 3 examines in detail the SBC architecture

which integrates the structure and behavior views of a
system. Advantages of using SBC architecture as a
model for requirements analysis and specification are
delineated in Section 4. Section 5 is a summary.

2. Deficiencies of Current Requirement Models

Current models for requirements analysis and
specification are divided into the following categories:
data-oriented, control-oriented, function-oriented, and
object-oriented as shown in Figure 2. Each of these
models, more or less, fails to grasp some essential
properties of the system.

Figure 2 Current Models for Requirements Analysis and Specification

Requirement
Model

Data-Oriented

Function-Oriented

Object-Oriented Control-Oriented

Data-oriented models for requirements analysis

and specification stress the system state as a data
structure. Jackson System Development (JSD)
[Came89] and Entity Relationship Modeling (ERM)
[Chen76] are primarily data-oriented. Data-oriented
models concentrate only on data and completely
ignore an integrated structure and behavior views
which seizes the essential properties of a system.
Therefore, data-oriented models should not and will
never become an ideal requirement model.

Control-oriented models for requirements
analysis and specification emphasize synchronization,
deadlock, exclusion, concurrency, and process
activation of a system. Petri Net [Reis92] and
Flowcharting [Bash86] are primarily control-oriented.
Control-oriented models concentrate only on the
control view and completely neglect an integrated
structure and behavior views which grasps the
essential properties of a system. Just like
data-oriented, data-oriented models should not and
will never become an ideal requirement model.

Function-oriented models for requirements
analysis and specification take the primary view of
the way a system transforms input data into output
data. Each transformation from input data into output
data demonstrates a function of the system. A system
may contain many such kinds of functions which
represent the function view of the system. Classical
Structured Analysis (SA) [DeMa79] fits into the
category of function-oriented models, as do
Structured Analysis and Design Technique (SADT)
[Marc88] and Structured Systems Analysis and
Design Method (SSADM) [Ashw90].

Function-oriented models concentrate only on the
function view and completely neglect an integrated
structure and behavior views which grabs the
essential properties of a system. Like data-oriented
and control-oriented, function-oriented models
should not and will never become an ideal
requirement model.

Object-oriented models for requirements
analysis and specification describe the system as
classes of objects and their behaviors.
Object-oriented Analysis (OOA) [Booc07], fitting
into the category of object-oriented models, looks at
the problem domain, with the aim of producing a
conceptual model of the information that exists in the
area being analyzed. The result of object-oriented
analysis is a description of what the system is
behaviorally required to do, in the form of a
conceptual model. That will typically be presented as
a set of use cases and a number of interaction
diagrams. Object-oriented models stress both the
structure view and the behavior view, but not an
integrated structure and behavior views. Because
object-oriented models do not emphasize an
integrated structure and behavior views which grabs
the essential properties of a system, and therefore
object-oriented models should not and will never
become an ideal requirement model.

3. Requirement Model of SBC Architecture

SBC (stands for structure-behavior coalescence)
architecture is an architecture-oriented model for
requirements analysis and specification which
integrates the structure and behavior views of a
system. SBC architecture consists of three
fundamental diagrams for requirements analysis and
specification. These diagrams are: a) framework
diagram, b) component operation diagram, and c)
interaction flow diagram.

(a) Requirement analysts use the framework
diagram (FD) to specify the multi-layer (also referred
to as multi-tier) decomposition and composition of a
system. FD is the first fundamental diagram to
achieve structure-behavior coalescence. Only
components will appear in the framework diagram.
As an example, Figure 3 shows the FD of an energy
management system EMS. In the figure, layer
Layer_3 contains the components A and B; layer
Layer_2 contains the components C and D; layer
Layer_1 contains the components E and F.

Figure 3 FD of EMS

Layer_1
E F

Layer_2
C D

Layer_3
A B

(b) Requirement analysts use component
operation diagram (COD) to specify all components’
operations of a system. COD is the second
fundamental diagram to achieve structure-behavior
coalescence. An operation provided by each
component represents a method of that component
[Booc07]. A component should not exist in a system
if it does not own any operation. As an example,
figure 4 shows that component A has two operations:
op_01 and op_02.

Figure 4 Two Operations of Component A

op_01

A

op_02

An operation formula is utilized to fully describe

and represent an operation. An operation formula
includes a) operation name, b) input parameters, and
c) output parameters as shown in Figure 5.

Operation_Name (In a1, a2, ..., aM ; Out aM+1 , aM+2, ..., aM+N)

Figure 5 Operation Formula

Operation name is the name of this operation. In

a system, every operation name should be unique.
Duplicate operation names shall not be allowed in
any system.

An operation may have several input and output
parameters. The input and output parameters,
gathered from all operations, represent the input data
and output data views of a system [Date03, Elma10].
As shown in Figure 6, component B owns the
operation op_03 which has no input/output parameter;
component B also owns the operation op_04 which
has one input parameters CustomerName (with arrow
direction pointing to the component) and one output
parameter Customer_Report (with arrow direction
opposite to the component).

Figure 6 Input/Output Parameters of Component B

B

op_04

CustomerName
Customer_Report

op_03

Data formats of input and output parameters can
be described by data type specifications. There are
two groups of data types: primitive and composite.
Figure 7 shows primitive data type specifications of
the input parameters Quantity occurring in the
operation formula op_01(In Quantity),
CustomerName occurring in the operation formula
op_04(In CustomerName; Out Customer_Report),
UnitPrice occurring in the operation formula
op_09(In UnitPrice).

Figure 7 Primitive Data Type Specifications

Parameter

Data Type

CustomerName

Text

Instances General Electric, IBM, HP

 Quantity

Integer

300

UnitPrice

Real

100,000.00

Figure 8 shows composite data type

specifications of the output parameter
Customer_Report occurring in the operation formula
op_04(In CustomerName; Out Customer_Report).

Date : 20120517
CustomerName : General Electric

EnergyType Quantity UnitPrice
A00001 400 100,000.00
A00002 300 200,000.00

Total : 100,000,000.00

Figure 8 Composite Data Type Specifications

Parameter

Data Type

Customer_Report

TABLE of
 Date : Text
 CustomerName : Text
 EnergyType : Text
 Quantity : Integer
 UnitPrice : Real
 Total : Real
End TABLE ;

Instances

To specify a system, COD is used to display all

components’ operations. Figure 9 shows the COD of
an energy management system EMS. In the figure,
component A has two operations: op_01 and op_02;
component B has two operations: op_03 and op_04;
component C has one operation: op_05; component
D has three operations: op_06, op_07, and op_08;
component E has one operations: op_09; component
F has one operations: op_10.

Figure 9 COD of EMS

op_01

A

op_02 op_03

B

op_05

C

op_06

D

op_07

op_09

E

CustomerName
Customer_Report

op_04

op_08

op_10

F

UnitPrice

Quantity

(c) Requirement analysts use interaction flow

diagram (IFD) to specify all individual behavior of a
system. IFD is the third fundamental diagram to
achieve structure-behavior coalescence. In a system,
if the components, and among them and the external
environment’s actors to interact, these interactions
will lead to the system behavior. That is,
“interaction” plays an important factor in integrating
structures with behaviors for a system. In the
example of energy management system EMS, an
actor interacting with six components shall describe
the overall system behavior. As shown in Figure 10,
interactions among the actor Customer and the
components A, C, and E generate the individual
behavior ems_1; interactions among the actor
Customer and the components A and D generate the
individual behavior ems_2; interactions among the
actor Customer and the components B, D, and F
generate the individual behavior ems_3; interaction
among the actor Customer and the component B and
D generates the individual behavior ems_4.

EMS

Figure 10 Four Individual Behaviors of EMS

A B

C D

E

Customer

Behavior ems_1

Behavior ems_2

Behavior ems_3

Behavior ems_4

F

The overall behavior of a system is the

collection of all its individual behaviors. All
individual behaviors are mutually independent of

each other. They tend to be executed concurrently
[Hoar85, Miln89, Miln99]. Each individual behavior
represents an execution path. We use interaction flow
diagram (IFD) to demonstrate this individual
behavior. Figure 11 demonstrates the IFD of the
behavior ems_1. The X-axis direction is from the left
side to right side and the Y-axis direction is from the
above to the below. Inside an IFD, there are four
elements: a) external environment’s actor, b)
components, c) interactions, and d) input/output
parameters. Participants of the interaction, such as the
external environment’s actor and each component,
are laid aside along the X-axis direction on the top of
the diagram. The external environment’s actor which
initiates the sequential interactions is always placed
on the most left side of the X-axis. Then, interactions
among the external environment’s actor and
components successively in turn decorate along the
Y-axis direction. The first interaction is placed on the
top of the Y-axis position. The last interaction is
placed on the bottom of the Y-axis position. Each
interaction may carry several input and/or output
parameters.

Figure 11 IFD of the Behavior ems_1

X-Axis

Y
-A

xi
s

op_01

ACustomer E

op_09

C

op_05

Quantity

UnitPrice

In Figure 11, Customer is an external

environment’s actor. A, C, and E are components.
op_01 is an operation, carrying the input parameter
Quantity, which is provided by the component A.
op_05 is an operation which is provided by the
component C. op_09 is an operation, carrying the
input parameter UnitPrice, which is provided by the
component E.

The execution path of Figure 11 is as follows.
First, actor Customer interacts with the component A
through the operation call interaction op_01, carrying
the input parameter Quantity. Next, component A
interacts with the component C through the operation
call interaction op_05. Finally, component C interacts
with the component E through the operation call
interaction op_09, carrying the input parameter
UnitPrice.

For each interaction, the solid line stands for
operation call while the dashed line stands for
operation return. The operation call and operation
return interactions, if using the same operation name,

belong to the identical operation. Figure 12 exhibits
two interactions (operation call interaction and
operation return interaction) having the identical
operation “op_04.”

Figure 12 Two Interactions Have the Identical Operation

op_04

BCustomer

CustomerName

op_04

Customer_Report

D

op_08

The execution path of Figure 12 is as follows.
First, actor Customer interacts with the component B
through the operation call interaction op_04, carrying
the input parameter CustomerName. Next,
component B interacts with the component D through
the operation call interaction op_08. Finally, actor
Customer interacts with the component B through the
operation return interaction op_04, carrying the
output parameter Customer_Report.

The overall EMS’s behavior includes four
behaviors: ems_1, ems_2, ems_3, and ems_4. Each of
them is described by an individual IFD. Figure 13
shows the IFD of the behavior ems_1. First, actor
Customer interacts with the component A through the
operation call interaction op_01, carrying the input
parameter Quantity. Next, component A interacts
with the component C through the operation call
interaction op_05. Finally, component C interacts
with the component E through the operation call
interaction op_09, carrying the input parameter
UnitPrice.

Figure 13 IFD of the Behavior ems_1

op_01

ACustomer E

op_09

C

op_05

Quantity

UnitPrice

Figure 14 shows the IFD of the behavior ems_2.

First, actor Customer interacts with the component A
through the operation call interaction op_02. Finally,

component A interacts with the component D through
the operation call interaction op_06.

Figure 14 IFD of the Behavior ems_2

op_02

ACustomer D

op_06

Figure 15 shows the IFD of the behavior ems_3.

First, actor Customer interacts with the component B
through the operation call interaction op_03. Next,
component B interacts with the component D through
the operation call interaction op_07. Finally,
component D interacts with the component F through
the operation call interaction op_10.

Figure 15 IFD of the Behavior ems_3

op_03

BCustomer F

op_10

D

op_07

Figure 16 shows the IFD of the behavior ems_4.

First, actor Customer interacts with the component B
through the operation call interaction op_04, carrying
the input parameter CustomerName. Next,
component B interacts with the component D through
the operation call interaction op_08. Finally, actor
Customer interacts with the component B through the
operation return interaction op_04, carrying the
output parameter Customer_Report.

Figure 16 IFD of the Behavior ems_4

op_04

BCustomer

CustomerName

op_04

Customer_Report

D

op_08

4. Adequacies of SBC Architecture

There are many advantages of using SBC
architecture as a model for requirements analysis and
specification. Let us discuss them now. Firstly, SBC
architecture furnishes the framework diagram to help
requirement analysts specify the multi-layer
decomposition and composition of a system. Early in
the system development process, analysts begin to
consider what components should be defined in the
hierarchy. Framework diagram is exactly the perfect
tool for analysts to write down the requirement
specification once the hierarchy of components is
defined.

Secondly, SBC architecture furnishes the
component operation diagram to help requirement
analysts specify all components’ operations of a
system. An operation is a method which defines the
mapping between inputs and outputs. A system may
contain many operations. Each operation is provided
by a component. A component owns at least an
operation. Component operation diagram is a perfect
tool for analysts to write down the specification once
all operations are defined.

Thirdly, SBC architecture uses the interaction
flow diagram to help analysts specify all individual
behavior of a system. The overall behavior of a
system is the collection of all its individual behaviors.
All individual behaviors are mutually independent of
each other. They tend to be executed concurrently.
Each individual behavior represents an execution
path. Interaction flow diagram is a perfect tool for
analysts to write down the specification once the
overall behavior of a system is defined.

Fourthly, because SBC architecture integrates
the structure and behavior views so it is able to
integrate the multiple views of a system. Therefore,
as a model for requirements analysis and
specification, SBC architecture is fully capable of
seizing the essential properties of a system.

5. Summary of Paper

If a model for requirements analysis and

specification is able to integrate the structure and
behavior views, then it is able to integrate the
multiple views of a system. If a model for
requirements analysis and specification is able to
integrate the multiple views, then it is able to grasp
the essential properties of a system.

Current models such as data-oriented,
control-oriented, function-oriented, and
object-oriented for requirements analysis and
specification failing to specify an integrated structure
and behavior views hence they are not able to
integrate the multiple views of a system. We
conclude that data-oriented, control-oriented,
function-oriented, and object-oriented for
requirements analysis and specification should not
and will never become an ideal requirement model.

The characteristics of SBC architecture lie in its
integrating the structure and behavior views hence it
is able to integrate the multiple views of a system.
Therefore, as a model for requirements analysis and
specification, SBC architecture is fully capable of
grasping the essential properties of a system.

References
[1] Ashworth, C., SSADM : A Practical Approach,

McGraw-Hill Book Company (UK) Ltd., 1st
Edition, 1990.

[2] Bashe, C., IBM's Early Computers, The MIT
Press, 1986.

[3] Bertalanffy, L. V., General System Theory:
Foundations, Development, Applications,
Revised Edition, George Braziller, Inc., 1969.

[4] Booch, G., Object-oriented Analysis and
Design with Applications, 3rd Edition,
Addison-Wesley, 2007.

[5] [Cameron, John R., The Jackson Approach to
Software Development, IEEE Computer
Society Press, Silver Spring, 1989.

[6] Chao, W. S. et al., System Analysis and Design:
SBC Software Architecture in Practice, LAP
Lambert Academic Publishing, 2009.

[7] Chao, W. S., Software Architecture: SBC
Architecture at Work, National Sun Yat-sen
University Press, 2011.

[8] Chen, P. et al., “The Entity-Relationship Model
- Toward a Unified View of Data”, ACM
Transactions on Database Systems 1 (1), pp.
9–36, 1976.

[9] DeMarco, T., Structured Analysis and System
Specification, Prentice Hall, 1979.

[10] Date, C. J., An Introduction to Database
Systems, 8th Edition, Addison Wesley, 2003.

[11] Elmasri, R., Fundamentals of Database
Systems, 6th Edition, Addison Wesley, 2010.

[12] Hoare, C. A. R., Communicating Sequential
Processes, Prentice-Hall, 1985.

[13] Marca, D. A. et al., SADT: Structured Analysis
and Design Technique, McGraw-Hill, 1988.

[14] Milner, R., Communication and Concurrency,
Prentice-Hall, 1989.

