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Abstract 

 
For requirements being able to convey the 

essential properties of a system, an ideal model for 

requirements analysis and specification should be 

based on a set of interacting components forming an 

integrated whole of that system’s structure and 

behavior views which sustains the essential properties 

of a system. Current models for requirements analysis 

and specification such as data-oriented, 

control-oriented, function-oriented, and 

object-oriented, more or less, fail to grasp some 

essential properties of the system. In this paper, we 

present an architecture-oriented model for 

requirements analysis and specification named SBC 

architecture which helps analysts specify the 

requirements based on a set of interacting 

components forming an integrated whole of the 

system’s structure and behavior views. SBC 

architecture is a perfect model for requirements 

analysis and specification because of its being able to 

convey the essential properties of any system. 
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1. Introduction 

In the simplest terms, the system development 
process consists of three activities: the analysis and 
specification of a requirement, the design of a 
solution, and the implementation of the solution. 
Requirements analysis and specification employ a 
model to analyze and specify various stakeholders’ 
perception of their need and understanding of the 
solution. That is, a model for requirements analysis 
and specification is besought to convey the essential 
properties that the system must satisfy. 

A system is complex that it consists of multiple 
views such as structure view, behavior view, input 
data view, output data view, business view, 
application view, technology view, function view, 
timing view, concurrency view, control view, 
management view, engineering view, etc. Among the 

above multiple views, the structure and behavior 
views are perceived as the two prominent ones. The 
structure view focuses on the system structure which 
is described by components and their composition 
while the behavior view concentrates on the system 
behavior which involves interactions among external 
environment’s actors and components. Accordingly, 
we define a system as a set of interacting components 
forming an integrated whole of that system’s multiple 
views [Bert69]. Components are sometimes labeled 
as parts, entities, objects, and structure elements 
[Chao09, Chao11]. Since structure and behavior 
views are the two most distinguished ones among 
multiple views, integrating the structure and behavior 
views becomes the most appropriate method for 
integrating multiple views of a system as shown in 
Figure 1. We thereat redefine a system as a set of 
interacting components forming an integrated whole 
of the system’s structure and behavior views. Based 
on this definition of a system, we conclude that an 
integrated structure and behavior views sustains the 
essential properties of a system. 
 

Figure 1  Structure and Behavior Views Integration Facilitates Multiple Views Integration
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For requirements being able to convey the 

essential properties of a system, an ideal model for 
requirements analysis and specification should be 
based on a set of interacting components forming an 
integrated whole of that system’s structure and 
behavior views. The purpose of this paper is to 
explore this principle in depth. The whole paper is 
organized as follows. Section 1 is the introduction. 
Current models such as data-oriented, 
control-oriented, function-oriented, and 
object-oriented for requirements analysis and 
specification failing to specify some essential 
properties of the system are discussed in Section 2. 
Section 3 examines in detail the SBC architecture 



which integrates the structure and behavior views of a 
system. Advantages of using SBC architecture as a 
model for requirements analysis and specification are 
delineated in Section 4. Section 5 is a summary.  

 
2. Deficiencies of Current Requirement Models 

Current models for requirements analysis and 
specification are divided into the following categories: 
data-oriented, control-oriented, function-oriented, and 
object-oriented as shown in Figure 2. Each of these 
models, more or less, fails to grasp some essential 
properties of the system. 
 

Figure 2     Current Models for Requirements Analysis and Specification
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Data-oriented models for requirements analysis 

and specification stress the system state as a data 
structure. Jackson System Development (JSD) 
[Came89] and Entity Relationship Modeling (ERM) 
[Chen76] are primarily data-oriented. Data-oriented 
models concentrate only on data and completely 
ignore an integrated structure and behavior views 
which seizes the essential properties of a system. 
Therefore, data-oriented models should not and will 
never become an ideal requirement model. 

Control-oriented models for requirements 
analysis and specification emphasize synchronization, 
deadlock, exclusion, concurrency, and process 
activation of a system. Petri Net [Reis92] and 
Flowcharting [Bash86] are primarily control-oriented. 
Control-oriented models concentrate only on the 
control view and completely neglect an integrated 
structure and behavior views which grasps the 
essential properties of a system. Just like 
data-oriented, data-oriented models should not and 
will never become an ideal requirement model. 

Function-oriented models for requirements 
analysis and specification take the primary view of 
the way a system transforms input data into output 
data. Each transformation from input data into output 
data demonstrates a function of the system. A system 
may contain many such kinds of functions which 
represent the function view of the system. Classical 
Structured Analysis (SA) [DeMa79] fits into the 
category of function-oriented models, as do 
Structured Analysis and Design Technique (SADT) 
[Marc88] and Structured Systems Analysis and 
Design Method (SSADM) [Ashw90]. 

Function-oriented models concentrate only on the 
function view and completely neglect an integrated 
structure and behavior views which grabs the 
essential properties of a system. Like data-oriented 
and control-oriented, function-oriented models 
should not and will never become an ideal 
requirement model. 

Object-oriented models for requirements 
analysis and specification describe the system as 
classes of objects and their behaviors. 
Object-oriented Analysis (OOA) [Booc07], fitting 
into the category of object-oriented models, looks at 
the problem domain, with the aim of producing a 
conceptual model of the information that exists in the 
area being analyzed. The result of object-oriented 
analysis is a description of what the system is 
behaviorally required to do, in the form of a 
conceptual model. That will typically be presented as 
a set of use cases and a number of interaction 
diagrams. Object-oriented models stress both the 
structure view and the behavior view, but not an 
integrated structure and behavior views. Because 
object-oriented models do not emphasize an 
integrated structure and behavior views which grabs 
the essential properties of a system, and therefore 
object-oriented models should not and will never 
become an ideal requirement model. 

 
3. Requirement Model of SBC Architecture 

SBC (stands for structure-behavior coalescence) 
architecture is an architecture-oriented model for 
requirements analysis and specification which 
integrates the structure and behavior views of a 
system. SBC architecture consists of three 
fundamental diagrams for requirements analysis and 
specification. These diagrams are: a) framework 
diagram, b) component operation diagram, and c) 
interaction flow diagram. 

(a) Requirement analysts use the framework 
diagram (FD) to specify the multi-layer (also referred 
to as multi-tier) decomposition and composition of a 
system. FD is the first fundamental diagram to 
achieve structure-behavior coalescence. Only 
components will appear in the framework diagram. 
As an example, Figure 3 shows the FD of an energy 
management system EMS. In the figure, layer 
Layer_3 contains the components A and B; layer 
Layer_2 contains the components C and D; layer 
Layer_1 contains the components E and F. 

Figure 3      FD of EMS

Layer_1
E F

Layer_2
C D

Layer_3
A B

 



(b) Requirement analysts use component 
operation diagram (COD) to specify all components’ 
operations of a system. COD is the second 
fundamental diagram to achieve structure-behavior 
coalescence. An operation provided by each 
component represents a method of that component 
[Booc07]. A component should not exist in a system 
if it does not own any operation. As an example, 
figure 4 shows that component A has two operations: 
op_01 and op_02. 
 

Figure 4      Two Operations of Component A
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An operation formula is utilized to fully describe 

and represent an operation. An operation formula 
includes a) operation name, b) input parameters, and 
c) output parameters as shown in Figure 5. 
 

Operation_Name (In a1, a2, ..., aM ; Out aM+1 , aM+2, ..., aM+N )

Figure 5      Operation Formula

 
Operation name is the name of this operation. In 

a system, every operation name should be unique. 
Duplicate operation names shall not be allowed in 
any system. 

An operation may have several input and output 
parameters. The input and output parameters, 
gathered from all operations, represent the input data 
and output data views of a system [Date03, Elma10]. 
As shown in Figure 6, component B owns the 
operation op_03 which has no input/output parameter; 
component B also owns the operation op_04 which 
has one input parameters CustomerName (with arrow 
direction pointing to the component) and one output 
parameter Customer_Report (with arrow direction 
opposite to the component). 
 

Figure 6        Input/Output Parameters of Component B

B

op_04

CustomerName
Customer_Report

op_03

 

Data formats of input and output parameters can 
be described by data type specifications. There are 
two groups of data types: primitive and composite. 
Figure 7 shows primitive data type specifications of 
the input parameters Quantity occurring in the 
operation formula op_01(In Quantity), 
CustomerName occurring in the operation formula 
op_04(In CustomerName; Out Customer_Report), 
UnitPrice occurring in the operation formula 
op_09(In UnitPrice). 
 

Figure 7      Primitive Data Type Specifications
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Figure 8 shows composite data type 

specifications of the output parameter 
Customer_Report occurring in the operation formula 
op_04(In CustomerName; Out Customer_Report). 
 

Date : 20120517
CustomerName :  General Electric

EnergyType Quantity UnitPrice
A00001 400 100,000.00
A00002 300 200,000.00

Total : 100,000,000.00

Figure 8      Composite Data Type Specifications
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To specify a system, COD is used to display all 

components’ operations. Figure 9 shows the COD of 
an energy management system EMS. In the figure, 
component A has two operations: op_01 and op_02; 
component B has two operations: op_03 and op_04; 
component C has one operation: op_05; component 
D has three operations: op_06, op_07, and op_08; 
component E has one operations: op_09; component 
F has one operations: op_10. 
 



Figure 9      COD of EMS
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(c) Requirement analysts use interaction flow 

diagram (IFD) to specify all individual behavior of a 
system. IFD is the third fundamental diagram to 
achieve structure-behavior coalescence. In a system, 
if the components, and among them and the external 
environment’s actors to interact, these interactions 
will lead to the system behavior. That is, 
“interaction” plays an important factor in integrating 
structures with behaviors for a system. In the 
example of energy management system EMS, an 
actor interacting with six components shall describe 
the overall system behavior. As shown in Figure 10, 
interactions among the actor Customer and the 
components A, C, and E generate the individual 
behavior ems_1; interactions among the actor 
Customer and the components A and D generate the 
individual behavior ems_2; interactions among the 
actor Customer and the components B, D, and F 
generate the individual behavior ems_3; interaction 
among the actor Customer and the component B and 
D generates the individual behavior ems_4. 
 

EMS

Figure 10      Four Individual Behaviors of EMS
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The overall behavior of a system is the 

collection of all its individual behaviors. All 
individual behaviors are mutually independent of 

each other. They tend to be executed concurrently 
[Hoar85, Miln89, Miln99]. Each individual behavior 
represents an execution path. We use interaction flow 
diagram (IFD) to demonstrate this individual 
behavior. Figure 11 demonstrates the IFD of the 
behavior ems_1. The X-axis direction is from the left 
side to right side and the Y-axis direction is from the 
above to the below. Inside an IFD, there are four 
elements: a) external environment’s actor, b) 
components, c) interactions, and d) input/output 
parameters. Participants of the interaction, such as the 
external environment’s actor and each component, 
are laid aside along the X-axis direction on the top of 
the diagram. The external environment’s actor which 
initiates the sequential interactions is always placed 
on the most left side of the X-axis. Then, interactions 
among the external environment’s actor and 
components successively in turn decorate along the 
Y-axis direction. The first interaction is placed on the 
top of the Y-axis position. The last interaction is 
placed on the bottom of the Y-axis position. Each 
interaction may carry several input and/or output 
parameters. 
 

Figure 11       IFD of the Behavior ems_1
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In Figure 11, Customer is an external 

environment’s actor. A, C, and E are components. 
op_01 is an operation, carrying the input parameter 
Quantity, which is provided by the component A. 
op_05 is an operation which is provided by the 
component C. op_09 is an operation, carrying the 
input parameter UnitPrice, which is provided by the 
component E. 

The execution path of Figure 11 is as follows. 
First, actor Customer interacts with the component A 
through the operation call interaction op_01, carrying 
the input parameter Quantity. Next, component A 
interacts with the component C through the operation 
call interaction op_05. Finally, component C interacts 
with the component E through the operation call 
interaction op_09, carrying the input parameter 
UnitPrice. 

For each interaction, the solid line stands for 
operation call while the dashed line stands for 
operation return. The operation call and operation 
return interactions, if using the same operation name, 



belong to the identical operation. Figure 12 exhibits 
two interactions (operation call interaction and 
operation return interaction) having the identical 
operation “op_04.” 
 

Figure 12     Two Interactions Have the Identical Operation
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The execution path of Figure 12 is as follows. 
First, actor Customer interacts with the component B 
through the operation call interaction op_04, carrying 
the input parameter CustomerName. Next, 
component B interacts with the component D through 
the operation call interaction op_08. Finally, actor 
Customer interacts with the component B through the 
operation return interaction op_04, carrying the 
output parameter Customer_Report. 

The overall EMS’s behavior includes four 
behaviors: ems_1, ems_2, ems_3, and ems_4. Each of 
them is described by an individual IFD. Figure 13 
shows the IFD of the behavior ems_1. First, actor 
Customer interacts with the component A through the 
operation call interaction op_01, carrying the input 
parameter Quantity. Next, component A interacts 
with the component C through the operation call 
interaction op_05. Finally, component C interacts 
with the component E through the operation call 
interaction op_09, carrying the input parameter 
UnitPrice. 
 

Figure 13       IFD of the Behavior  ems_1
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Figure 14 shows the IFD of the behavior ems_2. 

First, actor Customer interacts with the component A 
through the operation call interaction op_02. Finally, 

component A interacts with the component D through 
the operation call interaction op_06. 
 

Figure 14       IFD of the Behavior  ems_2
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Figure 15 shows the IFD of the behavior ems_3. 

First, actor Customer interacts with the component B 
through the operation call interaction op_03. Next, 
component B interacts with the component D through 
the operation call interaction op_07. Finally, 
component D interacts with the component F through 
the operation call interaction op_10. 
 

Figure 15       IFD of the Behavior  ems_3
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Figure 16 shows the IFD of the behavior ems_4. 

First, actor Customer interacts with the component B 
through the operation call interaction op_04, carrying 
the input parameter CustomerName. Next, 
component B interacts with the component D through 
the operation call interaction op_08. Finally, actor 
Customer interacts with the component B through the 
operation return interaction op_04, carrying the 
output parameter Customer_Report. 
 



Figure 16       IFD of the Behavior ems_4
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4. Adequacies of SBC Architecture 

There are many advantages of using SBC 
architecture as a model for requirements analysis and 
specification. Let us discuss them now. Firstly, SBC 
architecture furnishes the framework diagram to help 
requirement analysts specify the multi-layer 
decomposition and composition of a system. Early in 
the system development process, analysts begin to 
consider what components should be defined in the 
hierarchy. Framework diagram is exactly the perfect 
tool for analysts to write down the requirement 
specification once the hierarchy of components is 
defined. 

Secondly, SBC architecture furnishes the 
component operation diagram to help requirement 
analysts specify all components’ operations of a 
system. An operation is a method which defines the 
mapping between inputs and outputs. A system may 
contain many operations. Each operation is provided 
by a component. A component owns at least an 
operation. Component operation diagram is a perfect 
tool for analysts to write down the specification once 
all operations are defined. 

Thirdly, SBC architecture uses the interaction 
flow diagram to help analysts specify all individual 
behavior of a system. The overall behavior of a 
system is the collection of all its individual behaviors. 
All individual behaviors are mutually independent of 
each other. They tend to be executed concurrently. 
Each individual behavior represents an execution 
path. Interaction flow diagram is a perfect tool for 
analysts to write down the specification once the 
overall behavior of a system is defined. 

Fourthly, because SBC architecture integrates 
the structure and behavior views so it is able to 
integrate the multiple views of a system. Therefore, 
as a model for requirements analysis and 
specification, SBC architecture is fully capable of 
seizing the essential properties of a system. 

 
5. Summary of Paper 

If a model for requirements analysis and 

specification is able to integrate the structure and 
behavior views, then it is able to integrate the 
multiple views of a system. If a model for 
requirements analysis and specification is able to 
integrate the multiple views, then it is able to grasp 
the essential properties of a system. 

Current models such as data-oriented, 
control-oriented, function-oriented, and 
object-oriented for requirements analysis and 
specification failing to specify an integrated structure 
and behavior views hence they are not able to 
integrate the multiple views of a system. We 
conclude that data-oriented, control-oriented, 
function-oriented, and object-oriented for 
requirements analysis and specification should not 
and will never become an ideal requirement model.  

The characteristics of SBC architecture lie in its 
integrating the structure and behavior views hence it 
is able to integrate the multiple views of a system. 
Therefore, as a model for requirements analysis and 
specification, SBC architecture is fully capable of 
grasping the essential properties of a system. 
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