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Abstract

A maze or labyrinth is a network of passages,
usually intricate and confusing. Finding a path
through a maze is a basic computer science problem
that can take many forms. In this paper, we consider
the case where a maze has a single goal location, and
agents must find a path to that goa from starting
point. This paper presents a particle swarm
optimization (PSO) based algorithm to solve maze
pathfinding problem. When generates a path accoding
to particle’s podtion, the priority-based decoding is
used. Moreover, noising method of local search is to
improve the solution. The proposed agorithmisto find
a path that is shortest, or nearly shortest with respect to
maze.
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1. Introduction

Pathfinding usually takes the form of a
state-space search applied to a two-, or
three-dimensional map [6]. Each state describes a
position on the map and application of a search
algorithm will reveal a route between two points on
the map. The computer/video games industry makes
extensive use of pathfinding, with virtualy every
game currently available incorporating some form of
agent-based Al and some spatial aspect. A* is often
the algorithm of choice, its popularity coming from
many sources including ease of implementation, its
efficiency and the huge body of experience built up
among the game programming community [1].
Pathfinding is the ssmple process of finding a route
from one point to another comes with ease to humans
aswell as animals and is as essential to survival asis
to convenience. On the other hand, it is a remarkably
difficult task to replicate in the artificial world.
Because it is essential to numerous technological
applications, notably autonomous locomotion of
mobile robots, movement of agents in games and
mazes [7-8], route planning for electronic maps and
so forth, intensive research has been performed into

solving this task. A great deal of effort has been put
into coming up with algorithms which generate the
shortest/fastest possible paths [4-5], however, these
have continuously incurred the penaty of either
taking extraneously long periods of time to compute
or requiring memory capacities that may not even be
present in todays supercomputers. Regardless, it has
been recognized that for the majority of practical
applications, such optimal paths are almost never
required and near-optimal paths will more than
suffice.

There has been arecent interest in the field of the
particle swarm Optinization (PSO) [2-3]. The basic
ideais to imitate the focking of birdsin order to solve
combinatorial  optimization problems within a
reasonable amount of time.

2. ThePSO with noising method methodology
The development of our algorithm is described
asfollows.

2.1 Problem formulation

The maze path planning problem is typicaly
formulated as follows: given a maze, we need to plan a
path between two specified locations, a start and end
point. The path should be free of collision and satisfies
certain optimization criteria (i.e. shortest path) [ ]. For
a given static environment of maze with six columns
and seven rows as figure 1, the black grids represent an
obstacle, the white grids denotes channel, s is the
source, and g is the destination.

Figure 1. A maze M with 42 grids
(m=6, n=7)

In figure 2, there are eight alowable direction
each grid can be moved.



Figure 2. The possible moving direction of each
grid for each particlei
We initialize the position and velocity of the maze
asin figure 3, the negative infinite value (-o0) denotes
obstacle. The x and v, whose value between 0.0 and 1.0,
represent the position and velocity of a particle,
respectively.
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(a) position data (b) velocity data
Figure 3. Initidization of the position and velocity
of the maze M for a particlei

A path from grid gi to grid gij+xk+y IS @ Sequence
of grids (9ijx Oij+1ke1s---» Gijexkey) iN Which no grid is
repeated.

2.2 PSO scheme

PSO is a versatile popul ation-based optimization
technique, in many respects similar to evolutionary
algorithms. Basicaly, particles fly above the fithess
landscape, while a particle’s movement is influenced
by its attraction to its neighborhood best, and its
personal best. Rui Mendes [9] discusses the complete
information about the particle swarm optimization. In
the standard PSO agorithm, al particles have their
position, velocity, and fitness values. The basic
elements of PSO is summarized asfollows:

[ ) Particle: xit is a candidate solution i in swarm

at iteration t. The i particle of the swarm is
represented by a mn-dimension space and can be

defined as Xit:[xit,j,k |j=1,2,...,m,k=1,2 ..... n] ’
where X’s are the optimized parameters and
X | is the position of the i" particle with

respect to jK" dimension (say, " row, K"
column).

®  Population: X'is the set of ps particles in the
swarm a iteration t, such that,

XU =[XE, X5y XL

®  Particle velocity: \/it is the velocity of particle i
a iteration t. It can be described as

t ot :
Vi =V ik a2 me12, 0] which  a

constant V,__ (often set to 4) is used to limit the
Ve ] for

avoiding the particle to converge to local optima.

t H t
range Ofvi,j,k’ e, vy €[V

° Particle best: PBf is the best value of the

particle i obtained untile iteration t. The best
position position associated with the best fitness
value of particle i obtained so far is caled

particle best PB! =

[pqt,j,k li-12...m k=12,..n] @d defined as with

the fitness function  f (PBf) )

® Global best: GB!'is the best position among all

paticles in the swarm, which is achieved so far

and can be expresssd a  GB'=

o] with the fitness

[gb},k i1z, m k=12,
function f(GB').

The current velocity of the jk™ dimension of thei™
particleis updated as follows:

V| i =WV}l + cognitive(t — 1) + social (t —1)
cognitive(t —1) = ¢;r,( pb.l,_fk - Xit,_jl,k) @
social (t - 1) = ¢,r, (b — X )

where ¢; and ¢, are acceleration coefficients which
were often set to be 2.0 according to past experience
and r; and r, are uniform random numbers between
[0,2]. The inertia weight w which is a parameter to
control the impact of the previous velocities on the
current velocity and can be dynamicaly varied by
applying an annealing scheme [10].

In the above discussion, PSO is restricted in real
number space. The resulted changes in position are

defined as formula 3, such that Xit,Jrj%k = Xit,j,k +Vit,j,k '
for j=12..,mk=12..,n.

X=X+ 2



The SPPisto find a path between two given grids
having minimum total distance. In PSO, the quality of a
particle (solution) is measured by afitness function. For
the SPP, the fitness function is obvious as the goal isto
find the minima distance path. Thus, the fitness of
thei™ particleis defined as

f(X;)=Dist(X;)+V(X,) (€)
N; -1

Dist(X;) = D dist(g; yx:i.y..) (4)
seq=1

Where g; w,=PPi(sed), giy~PPi(sea+1), PP; isthe
set of sequentid grid IDs for the i" particle,
Ni=|PP;|=number of grids that congtitute the path
represented by the i"™ particle, and dist(g; w,x, Oiy.) isthe
distance of between the grid giwx and grid giy,, such

that dist(Gu Giya) =/ (W— y)? + (x—2)? - Thus, the
fitness function takes minimum value when the shortest
path is obtained. If the path represented by a particle
happens to be an invalid path, its fitness is assigned a
penalty value so that the particle’s attributes will not be
considered by others for future search. The penalty
function of a particleis defined as follows.

V(Xi)z{o if valid path )

oo if invalid path

The particle best position of each particle is
updated using the following equation.

PB™ if
PBI =4 '
X if

f(X}) 2 f(PB™) ©

fF(X{) < f(PB™)
Finaly, the global best position found so far in the

swarm populationisobtained for 1<j < ps as

PB' argmin f (PB)

min f(PB") < f(GB"Y) ()

GB'= if
GB'!  otherwise

2.3 Path encoding and decoding

The main issue in applying PSO to the SPP is the
encoding of a maze path into a particle in PSO. This
encoding in turn affects the effectiveness of a
solution/search process. The guiding information are
the priorities of every grids in the maze. During PSO
initidlization, these priorities are assigned randomly.
The path is generated by sequentia grid appending
procedure beginning with the source grid and
terminating at the destination node, the procedure is
referred as to path growth strategy. At each step of path
congtruction from a particle, there are usualy severa

grids available for consideration and the one with the
highest priority is added into path and the process is
repeated until the degtination node is reached. For
effective decoding, a dynamic grid adjacency matrix is
maintained in the computer implementation and is
updated after every node selection so that a selected
grid isnot a candidate for future selection [13].

119030 is the allowable moving adjacent grids of g«
Particle_decoding(X;)
0ij« =source grid
Xijk ="0
cnt=0
PATH(cnt)={ g}
while({Gixy € S, adXixy # —00} #{})
cnt=cnt+1
gi,X,y:argmaX{ Xi,x,yl Oixye S(gi,j,k)uxi,x,y %+ —0 }
Gijk = Qixy
PATH(cnt)=PATH(cnt) U { gijx }
X j k=0
if (G« =goal grid)
return the path PATH(cnt)
ese
consider the neighborhood of grid g fill
dead end for dynamic reducing the maze.
end while
returninvalid_Path

Figure 4 The priority-based decoding procedure

2.4 Noising method

The local search essentialy diverdifiers the search
scheme. Recently, one such efficient metaheristics
caled noising method, was proposed by Chron and
Hurdy [11,12]. For computation of the optimum of a
combinatorial optimization problem, instead of taking
te genuine data into account directly, they are perturbed
by some progressvely decreasing “noise” while
applying local search. The noising method used here is
based on noising the variations in the optimizing
function f, that is, perturbing the variations of f. When a
neighbor solution X’ of the solution X is computed
by applying an elementary transformation [11, 12] to X,
the genuine variaion Af (X, X")= f(X')- f(X)
is not consdered, but a noised variaion
Af s (X, Xy = Af (X', X) +¢*is used, where
g"denotes the noise at each trid k and depends the

noise rate (NR). Similar to iterative descent method in a
function minimization problem, if Af ., (X,X') <

0, X' becomesthe new current solution, otherwise X
is kept as the current solution and another neighbor of
X is tried. The generic elementary transformation used
for local neighborhood search is the swappong of grid
priority values a two randomly selected of a particle



priority (position) vector and two such swapping
transformations are successively applied in each trial
for generation atrial solution in thelocal search [13].

2.5 The proposed algorithm

The particle swarm optimization algorithm to
minimize SPP in a given maze presents as follows.
Algorithm PSOSPP
Step 1. initidize t=0, f (GB') = o, GB={},

PATHg|oba|:{}, PATHF{} for i:1,...,pS.
Step 2. fill dead end for reducing the maze on the
efficiency consideration, except grid sand g.
Step 3. for each particlei,
initialize each allowable moving grid’s position

X j i X;' randomly from [0,1],
initialize each allowable moving grid’s velocity
Vi j«in V' randomly from[0,1].
Step 4. for each particlei,
(8 Generate path
Particle_Decoding( X;").

PATH;=

(b) Evaluate fitness value f( X;') using Eq.
(©)

(¢) Local search using noising method
described in section 2.4.

Step 5. Update particle best position and global best
position according to Eq.(6) and Eq. (7),
respectively.

Step 6. Update PATHg o0 and PATH; for i=1,...,ps.

Step 7. Update velocity : update the i particle velocity
usng Eq. (1) restricted by maximum and
minimumthreshold Vv and -V -

Step 8. Update position: update the i™ particle position
using Eqg. (2).

Step 9. t=t+1

Step 10. Repeat step 3 to 9 until a given maximum
number of iterationsiter,, iS achieved.

Step 11. Output the best path PATHgowa and its
distance.

3. Computer simulation and conclusion

The accuracy and efficiency of the proposed
algorithm were verified by implementing simulation

programs in Java language executed in Intel Pentium D

CPU 3.4GHz with 512MB-DRAM on MS-Windows XP.

We use some simulation case of different size of maze
between 20x 20 and 100x 100. The velocity of each
particle is updated according to different method as
follows: (a) an inertia weight w=1, (b) an inertia weight
w=0.5, (c) a dynamic inertia weight w=0.9~0.4 varing
according to loop iteration, (d) a congtriction factor
K=0.729843788, and c,=c,=2.05 [14], () a constriction
factor K=2/() 2 _ ¢ — \/c? — 4c |y Where c= cy+C; and c>4

[14].

Thefigure 5 show a path in the maze M obtained by
PSOSPP, the shortest tour (path) form source grid s to
destination grid g is represented as (Qopt1,1: Jopt2.2:
Oopt.3.3 Jopt.3.4» Jopt.35 Joptas Jopts7: Joprez) Which the
shortest path is obtained by paticle opt. Assume size of
each grid is 1, the distance of this path is 8.65685.

g

Figure 5 A possible tour of the maze M

In our smulation, the proposed agorithm may
obtain the shortest path in most cases, and the
computation time seems to be significantly shorter than
that needed for the exhaustive method. When the
proposed method fails to give an exact solution, the
deviation from the exact solution is very small. The
technique presented in this paper would be helpful for
readers to understand the corrdation between
pathfinding, and maze environment.
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