
混合粒子群優化及噪音擾動法求解最短路徑問題
Hybrid Particle Swarm Optimization and Noising Method for Solving the

Shortest Paths Problem
邱錦清 許正憲 王龍發 劉憶瑩
德明財經科技大學資訊管理系

Chin-Ching Chiu, Cheng-Hsien Hsu, Lung-fa Wang, Yi-Ying Liu

Department of Management Information System, Takming University of Science and
Technology

E-mail: chiu@takming.edu.tw

Abstract

A maze or labyrinth is a network of passages,
usually intricate and confusing. Finding a path
through a maze is a basic computer science problem
that can take many forms. In this paper, we consider
the case where a maze has a single goal location, and
agents must find a path to that goal from starting
point. This paper presents a particle swarm
optimization (PSO) based algorithm to solve maze
pathfinding problem. When generates a path accoding
to particle’s position, the priority-based decoding is
used. Moreover, noising method of local search is to
improve the solution. The proposed algorithm is to find
a path that is shortest, or nearly shortest with respect to
maze.

Keywords: Shortest path problem, particle swarm
optimization, noising method

1. Introduction

Pathfinding usually takes the form of a
state-space search applied to a two-, or
three-dimensional map [6]. Each state describes a
position on the map and application of a search
algorithm will reveal a route between two points on
the map. The computer/video games industry makes
extensive use of pathfinding, with virtually every
game currently available incorporating some form of
agent-based AI and some spatial aspect. A* is often
the algorithm of choice, its popularity coming from
many sources including ease of implementation, its
efficiency and the huge body of experience built up
among the game programming community [1].
Pathfinding is the simple process of finding a route
from one point to another comes with ease to humans
as well as animals and is as essential to survival as is
to convenience. On the other hand, it is a remarkably
difficult task to replicate in the artificial world.
Because it is essential to numerous technological
applications, notably autonomous locomotion of
mobile robots, movement of agents in games and
mazes [7-8], route planning for electronic maps and
so forth, intensive research has been performed into

solving this task. A great deal of effort has been put
into coming up with algorithms which generate the
shortest/fastest possible paths [4-5], however, these
have continuously incurred the penalty of either
taking extraneously long periods of time to compute
or requiring memory capacities that may not even be
present in todays supercomputers. Regardless, it has
been recognized that for the majority of practical
applications, such optimal paths are almost never
required and near-optimal paths will more than
suffice.

There has been a recent interest in the field of the
particle swarm Optinization (PSO) [2-3]. The basic
idea is to imitate the focking of birds in order to solve
combinatorial optimization problems within a
reasonable amount of time.

2. The PSO with noising method methodology
The development of our algorithm is described

as follows.

2.1 Problem formulation
The maze path planning problem is typically

formulated as follows: given a maze, we need to plan a
path between two specified locations, a start and end
point. The path should be free of collision and satisfies
certain optimization criteria (i.e. shortest path) []. For
a given static environment of maze with six columns
and seven rows as figure 1, the black grids represent an
obstacle, the white grids denotes channel, s is the
source, and g is the destination.

s

g
Figure 1. A maze M with 42 grids

(m=6, n=7)

In figure 2, there are eight allowable direction
each grid can be moved.

j-1,k

j,k+1

j+1,k

j-1,k+1

j+1,k+1

j-1,k-1

j+1,k-1

j,k-1 j,k

Figure 2. The possible moving direction of each
grid for each particle i

We initialize the position and velocity of the maze
as in figure 3, the negative infinite value (-∞) denotes
obstacle. The x and v, whose value between 0.0 and 1.0,
represent the position and velocity of a particle,
respectively.




































xxxx
xxxxx

xx
xxxxx

xxxx
xxxx

(a) position data




































vvvv
vvvvv

vv
vvvvv

vvvv
vvvv

(b) velocity data
Figure 3. Initialization of the position and velocity

of the maze M for a particle i
A path from grid gi,j,k to grid gi,j+x,k+y is a sequence

of grids (gi,j,k, gi,j+1,k+1,…, gi,j+x,k+y) in which no grid is
repeated.

2.2 PSO scheme

PSO is a versatile population-based optimization
technique, in many respects similar to evolutionary
algorithms. Basically, particles fly above the fitness
landscape, while a particle’s movement is influenced
by its attraction to its neighborhood best, and its
personal best. Rui Mendes [9] discusses the complete
information about the particle swarm optimization. In
the standard PSO algorithm, all particles have their
position, velocity, and fitness values. The basic
elements of PSO is summarized as follows:

 Particle: t
iX is a candidate solution i in swarm

at iteration t. The ith particle of the swarm is
represented by a mn-dimension space and can be
defined as]|[,...,2,1,,...,2,1,, nkmj

t
kji

t
i xX  ,

where x’s are the optimized parameters and
t

kjix ,, is the position of the ith particle with

respect to jkth dimension (say, jth row, kth

column).

 Population: tX is the set of ps particles in the
swarm at iteration t, such that,

],...,,[21
t
ps

ttt XXXX  .

 Particle velocity: t
iV is the velocity of particle i

at iteration t. It can be described as

]|[,...,2,1,,...,2,1,, nkmj
t

kji
t

i vV  which a

constant maxV (often set to 4) is used to limit the

range of t
kjiv ,, , i.e.,],[maxmax,, VVvt

kji  for

avoiding the particle to converge to local optima.

 Particle best: t
iPB is the best value of the

particle i obtained untile iteration t. The best
position position associated with the best fitness
value of particle i obtained so far is called
particle best t

iPB

]|[,...,2,1,,...,2,1,, nkmj
t

kjipb  and defined as with

the fitness function)(t
iPBf .

 Global best: tGB is the best position among all

paticles in the swarm, which is achieved so far
and can be expressed as tGB

]|[,...,2,1,,...,2,1, nkmj
t

kjgb  with the fitness

function)(t
iGBf .

The current velocity of the jkth dimension of the ith

particle is updated as follows:

)()1(

)()1(

)1()1(

1
,,

1
,22

1
,,

1
,,11

1
,,,,













t
kji

t
kj

t
kji

t
kji

t
kji

t
kji

xgbrctsocial

xpbrctcognitive

tsocialtcognitivewvv

(1)

where c1 and c2 are acceleration coefficients which
were often set to be 2.0 according to past experience
and r1 and r2 are uniform random numbers between
[0,1]. The inertia weight w which is a parameter to
control the impact of the previous velocities on the
current velocity and can be dynamically varied by
applying an annealing scheme [10].

In the above discussion, PSO is restricted in real
number space. The resulted changes in position are
defined as formula 3, such that t

kji
t

kji
t

kji vxx ,,,,
1
,,  ,

for nkmj ,...,2,1,,...,2,1  .

t
i

t
i

t
i VXX 1 (2)

The SPP is to find a path between two given grids
having minimum total distance. In PSO, the quality of a
particle (solution) is measured by a fitness function. For
the SPP, the fitness function is obvious as the goal is to
find the minimal distance path. Thus, the fitness of
the ith particle is defined as

)()()(iii XXDistXf  (3)







1

1
,,,,),()(

iN

seq
zyixwii ggdistXDist (4)

Where gi,w,x=PPi(seq), gi,y,z=PPi(seq+1), PPi is the
set of sequential grid IDs for the ith particle,
Ni=|PPi|=number of grids that constitute the path
represented by the ith particle, and dist(gi,w,,x, gi,y,z) is the
distance of between the grid gi,w,x and grid gi,y,z, such

that dist(gi,w,x, gi,y,z) = 22)()(zxyw  . Thus, the

fitness function takes minimum value when the shortest
path is obtained. If the path represented by a particle
happens to be an invalid path, its fitness is assigned a
penalty value so that the particle’s attributes will not be
considered by others for future search. The penalty
function of a particle is defined as follows.







pathinvalidif

pathvalidif0
)(iX (5)

The particle best position of each particle is
updated using the following equation.








 



)()(
)()(

1

11

t
i

t
i

t
i

t
i

t
i

t
it

i PBfXfifX
PBfXfifPB

PB (6)

Finally, the global best position found so far in the
swarm population is obtained for psi 1 as














otherwiseGB
GBfPBfif

PBfPB
GB

t

tt
i

t
i

t
i

t

1

1)()(min

)(minarg
(7)

2.3 Path encoding and decoding

The main issue in applying PSO to the SPP is the
encoding of a maze path into a particle in PSO. This
encoding in turn affects the effectiveness of a
solution/search process. The guiding information are
the priorities of every grids in the maze. During PSO
initialization, these priorities are assigned randomly.
The path is generated by sequential grid appending
procedure beginning with the source grid and
terminating at the destination node, the procedure is
referred as to path growth strategy. At each step of path
construction from a particle, there are usually several

grids available for consideration and the one with the
highest priority is added into path and the process is
repeated until the destination node is reached. For
effective decoding, a dynamic grid adjacency matrix is
maintained in the computer implementation and is
updated after every node selection so that a selected
grid is not a candidate for future selection [13].

//S(gi,j,k) is the allowable moving adjacent grids of gi,j,k

Particle_decoding(Xi)
gi,j,k =source grid
xi,j,k =-∞
cnt=0
PATH(cnt)={ gi,j,k }
while({gi,x,y  S(gi,j,k), and xi,x,y  }{})

cnt=cnt+1
gi,x,y=argmax{xi,x,y| gi,x,y S(gi,j,k),xi,x,y  }
gi,j,k = gi,x,y

PATH(cnt)=PATH(cnt)∪{ gi,j,k }
xi,j,k=-∞
if (gi,j,k =goal grid)

return the path PATH(cnt)
else

consider the neighborhood of grid gi,j,k, fill
dead end for dynamic reducing the maze.

end while
return invalid_Path

Figure 4 The priority-based decoding procedure

2.4 Noising method

The local search essentially diverdifiers the search
scheme. Recently, one such efficient metaheristics
called noising method, was proposed by Chron and
Hurdy [11,12]. For computation of the optimum of a
combinatorial optimization problem, instead of taking
te genuine data into account directly, they are perturbed
by some progressively decreasing “noise” while
applying local search. The noising method used here is
based on noising the variations in the optimizing
function f, that is, perturbing the variations of f. When a
neighbor solution Xof the solution X is computed
by applying an elementary transformation [11, 12] to X,
the genuine variation)()(),(XfXfXXf 
is not considered, but a noised variation

),(XXfnoised
kXXf ),(is used, where

k denotes the noise at each trial k and depends the

noise rate (NR). Similar to iterative descent method in a
function minimization problem, if),(XXfnoised  <

0, Xbecomes the new current solution, otherwise X
is kept as the current solution and another neighbor of
X is tried. The generic elementary transformation used
for local neighborhood search is the swappong of grid
priority values at two randomly selected of a particle

priority (position) vector and two such swapping
transformations are successively applied in each trial
for generation a trial solution in the local search [13].

2.5 The proposed algorithm

The particle swarm optimization algorithm to
minimize SPP in a given maze presents as follows.

Algorithm PSOSPP
Step 1. initialize t=0, )(tGBf , GB={},

PATHglobal={}, PATHi={} for i=1,…,ps.
Step 2. fill dead end for reducing the maze on the

efficiency consideration, except grid s and g.
Step 3. for each particle i,

initialize each allowable moving grid’s position

kjix ,, in t
iX randomly from [0,1],

initialize each allowable moving grid’s velocity

kjiv ,, in t
iV randomly from [0,1].

Step 4. for each particle i,
(a) Generate path PATHi=

Particle_Decoding(t
iX).

(b) Evaluate fitness value f(t
iX) using Eq.

(3)
(c) Local search using noising method

described in section 2.4.
Step 5. Update particle best position and global best

position according to Eq.(6) and Eq. (7),
respectively.

Step 6. Update PATHglobal and PATHi for i=1,…,ps.
Step 7. Update velocity : update the ith particle velocity

using Eq. (1) restricted by maximum and
minimum threshold maxV and maxV .

Step 8. Update position: update the ith particle position
using Eq. (2).

Step 9. t=t+1
Step 10. Repeat step 3 to 9 until a given maximum

number of iterations itermax is achieved.
Step 11. Output the best path PATHglobal and its

distance.
3. Computer simulation and conclusion

The accuracy and efficiency of the proposed
algorithm were verified by implementing simulation
programs in Java language executed in Intel Pentium D
CPU 3.4GHz with 512MB-DRAM on MS-Windows XP.
We use some simulation case of different size of maze
between 2020 and 100100. The velocity of each
particle is updated according to different method as
follows: (a) an inertia weight w=1, (b) an inertia weight
w=0.5, (c) a dynamic inertia weight w=0.9~0.4 varing
according to loop iteration, (d) a constriction factor
K=0.729843788, and c1=c2=2.05 [14], (e) a constriction
factor K=2/ |)42(| 2 ccc  where c= c1+c2 and c>4

[14].

The figure 5 show a path in the maze M obtained by
PSOSPP, the shortest tour (path) form source grid s to
destination grid g is represented as (gopt,1,1, gopt,2,2,
gopt,3,3, gopt,3,4, gopt,3,5, gopt,4,6, gopt,5,7, gopt,6,7) which the
shortest path is obtained by paticle opt. Assume size of
each grid is 1, the distance of this path is 8.65685.

In our simulation, the proposed algorithm may
obtain the shortest path in most cases, and the
computation time seems to be significantly shorter than
that needed for the exhaustive method. When the
proposed method fails to give an exact solution, the
deviation from the exact solution is very small. The
technique presented in this paper would be helpful for
readers to understand the correlation between
pathfinding, and maze environment.
References
[1] Cain T., Practical Optimisations for A* Path

Generation. AI Game Programming Wisdom,
Charles River Media 2002.

[2] Kennedy J. and Eberhart R. C., Particle swarm
optimization, Proc. IEEE International
Conference on Neural Networks, IV, Piscataway,
NJ, pp. 1942~1948, 1995.

[3] Shi Y. H. and Ebehart R. C., A modified particle
swarm optimizer. IEEE International Conference
on Evolutionary Computation, Anchorage,
Alaska, 1998.

[4] Hart P. E., Nilsson N. J., and Raphael B., A
formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, SSC-4(2):
100-107, 1968.

[5] Hart P. E., Nilsson N. J., and Raphael B.,
Correction to “A formal basis for the heuristic
determination of minimum cost paths. SIGART
Newsletter, 37: 28-29, 1972.

[6] Reese B., and Stout B., Finding a Pathfinder.
AAAI Spring Symposium on Artificial
Intelligence and Computer Games, pp. 69-72,
1999.

[7] Scott G. V, and Zach Matley, Evolving Sparse
Direction Maps for Maze pathfinding. IEEE
Transactions on Evolutionary Computation,
1(1):835-838, 2004.

[8] Stentz A., Optimal and Efficient Path Planning for
Partially-Known Environments. Proceedings of

s

g

Figure 5 A possible tour of the maze M

the IEEE International Conference on Robotics
and Automation (ICRA ’94), vol. 4, pp. 3310–
3317, 1994.

[9] Rui Mendes, James Kennedy and Jose Neves, The
Fully Informed Particle Swarm Simpler, Maybe
Better. IEEE Transactions of Evolutionary
Computation, vol. 1, no. 1, 2005.

[10] S. N. Sivanandam, P. Visalakshi and A.
Bhuvaneswari, Multiprocessor scheduling using
hybrid particle swram optimization with
dynamically varying inertia. International Journal
of Computer Science Applications vol. 4, no. 3,
95-106, 2007.

[11] I. Charon and O. Hurdy, The noising method : a
new method for combinatorial optimization,
Operations Research Letters, vol. 14, no. 3, pp.
133-137, 1993.

[12] I. Charon and O. Hurdy, The noising method : a
generalization of some metaheruistics, European
Journal of Operational Research, vol. 135, no. 1,
pp. 86-101, 2001.

[13] Ammar W. Mohemmed and Nirod Chandra
Sahoo, Effient Computation of Shortest Paths in
Networks using Particle Swarm Optimization and
Noising Metaheuristics, Hindawi Publishing
Corporation Discrete Dynamic in Nature and
Society, vol. 2007, Article ID 27383, pp. 1-25,
2007.

[14] M. Clerc and J. Kennedy, The particle swarm
explosion, stability, and convergence in a
multidimensional complex space, IEEE
Transactions on Evolutionary Computation, vol.
6, no. 1, pp. 58-73, 2002.

