以國防架構規範研析國軍裝備後勤補保之運作

The Analysis on the Operation of the Logistic of the Military by Using the DoD Architecture Framework

張枝成¹、何仁銘²

¹國防大學理工學院機電能源及航太工程系教授 ²國防大學理工學院機電能源及航太工程系碩士畢業生

Email: changjc@ndu.edu.tw

摘要

在國防預算日趨減縮之條件下,為了維持作戰 效益、維修效率並降低維持成本,勢必以整體後勤 支援方式來進行最有效之後勤管理,惟後勤相關技 術資料與管理資訊數量極為龐大,為有效整合系統 各項作業,導入適切之架構規範以定義一個共通方 法和文件規範,使各軍種緊密融合為一體已成為重 要課題,本研究探討如何運用系統工程中之結構分 析法設計後勤作業架構,確保後勤作業能符合作戰 需求中之性能與效益,對於日後架構發展設計建立 其應有之標準程序、步驟、要領等基礎。本研究之 架構產品設計,主要針對後勤支援中之保修維護, 並以地區聯合保修廠之轉廠送修作業來進行國防 架構規範文件之模式塑建,其中建立之產品區分為 作業觀點及系統觀點,且其文件均可為電腦所判 讀,如此在實施人員精簡前,可針對相關之業務實 施模式模擬,確保後續人力可有效的執行相關業 務,使國防事務推動順遂。本文為驗證架構規範所 產出之文件易於資訊化之優勢,乃應用 ARENA 軟 體建立動態模擬模型進行測試,其中搜集地區聯保 廠保修相關作業參數,分析建構轉廠修護作業內不 同資源分配下的執行時間與瓶頸,經由軟體驗證, 本研究可檢驗出後勤作業的可行性及合理性,並分 析出較合理之人員編制及資源配置方法,充分地提 供國軍在組織成長規劃與業務運作掌控時所需的 資訊,此結果可做為國軍後勤作業及人員精進之參 考, 並期能解決精粹案所帶來的不確定性, 大量降 低變革的風險、有效地規劃組織與流程。

一、研究動機

後勤為運用資源(人力、物力、財力),以建立與增進軍隊生存與戰鬥持續力,支持戰爭的遂行,達成作戰目標之科學與藝術。諸凡軍隊中一切補給與勤務之供應活動,均屬後勤範疇,對戰爭具有決定性之影響,故後勤管理的成效在平時影響軍事資源的運用;在戰時則直接影響戰爭的成敗,所以,後勤管理可說是國防體系的核心工作[1]。

後勤是軍隊戰力的基礎,而其重點在於補給與 保修,兩者乃是一體兩面,亦為陸軍後勤政策的兩 大支柱,二者配合的良窳,影響支援作戰效率甚鉅。而國防政策朝向建立量小、質精的軍隊,在此大趨勢下,如何精進補給與保修的管理效能成為一大課題,而所帶來的效益不僅可精簡人力、節約資源、避免浪費,降低後勤成本,亦對軍隊遂行任務有極大的助益。

前述後勤體系中的補給與保修作業,其作業權 責主要區分為三段五級[2],其目的就是透過保 養、保修及翻修等手段,維護武器系統使之達到妥 善堪用,戰時發揮有效之戰力,故後勤體制影響國 軍戰力甚鉅。然在歷經國軍組織多次變革與再造狀 況下(計有精實案與精進案),卻出現部份後勤作 業並未獲得明確改善[3],例如零附件補給率過 低、獲得時程過久、申補作業繁雜、後勤體制不夠 明確、後勤指管機關部分職責重疊、任務重複等。 現又遇精粹案之實施,後勤體制在近幾年間如此頻 繁改革, 難免令基層單位較保守人員感到無所適 從。為使改革順利推動,本研究擬採用美國國防架 構規範 (DoDAF) 以設計國軍後勤補保之架構, 並運用ARENA軟體建立動態模擬模型進行測試, 研析出較合理之人員編制及資源配置方法,使國軍 後勤作業能在組織更迭的狀況下,持續維持有效益 之補保作業,進一步能增加後勤能量,來提昇國軍 整體後勤作業的效能。

二、研究方法

DoDAF主要是用於處理複雜性與整合性的問題[4],故本研究案用其描述整體後勤中之後勤補保產生作業流及資訊流。雖然DoDAF並沒有強調任一種特定架構設計方法,但其規範要求須以語意上一致且互通的方式,提供架構發展的相關規則、標準實體與關聯性。為使設計步驟更為明確可包納,基研究採結構化分析方法以發展架構,其流明和完全,區分為發展作戰概念、建立功能架構及初步實體架構、完成與組織結構、建立功能架構及初步實體架構、完成作戰架構觀點及建立系統活動模式、完成系統架構與組織結構、建立功能架構及初步實體架構、完成作戰架構觀點及建立系統活動模式、完成系統不可於實際段。而本研究據此做為後勤補保作業之分析及研討,並完成各產品之描述,最後則應用ARENA軟體建立動態模擬模型以驗證測試各產品之可行性。

因整體後勤包含後勤工程、後勤支援及後勤管理等,其涵括範圍極大,為免產品過於發散,因此本研究案之架構產品設計,主要針對後勤支援中之保修維護來實施產品調製,以有效聚焦DoDAF架構產品;另於採用了System Architecture軟體來做為產品實現之工具。

三、模式之建立與驗證

3.1 建立 OV-1 高階作戰概念圖

OV-1高階作戰概念圖是由定義的圖形及符號來表示行動、節點及相互間的關係,並利用文字來表達與說明圖形的定義,使得架構產品設計更易於定型化,且更易於運用,其可謂是涵蓋任務全貌最大格局之視圖,亦是提供指揮者以上層級人員閱覽之概念性視圖,本研究之後勤補保OV-1高階作戰概念圖如圖1所示。

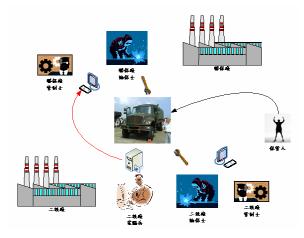


圖1 後勤補保OV-1高階作戰概念圖[7]

3.2 建立 OV-5a 作戰活動階層模式

OV5a作戰活動階層模式可讓使用者檢視相關 任務中之活動及其階層關係。在轉廠維修作業任務 中其活動包含了二級轉廠,轉廠審查、最初檢驗、 估工估料、料件申請、料件飭撥、派工作業、三級 檢修及最終檢驗等9項,但在二級轉廠該活動中, 吾人可再進行階層式分解為二級派工、二級檢修、 維修權責判定及轉廠申請等4項。最後據以產出 OV-5a作戰活動階層模式,本研究之後勤補保 OV-5a作戰活動階層模式如圖2所示。

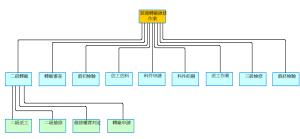


圖2 OV-5a作戰活動階層模式[7]

3.3 建立 OV-4 組織結構

組織關係圖在說明架構中組織之間的關係,並以階層方式描述。這些關係包含指揮與管制、協調關係及其他,這都是由架構的目的來決定,本研究之後勤補保OV-4組織關係圖如圖3所示。

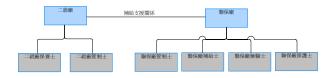


圖3 OV-4組織關係圖[7]

3.4 建立功能架構及初步實體架構

從裝備轉廠維修作業系統內向外觀視,可得到輸入為裝備維保表及輸出為終檢單,運用 IDEFO語言,可建立整個系統如圖 4 所示,另配置輸入、輸出於先前之 OV-5a,可獲得階層活動的模式如圖。

圖4 系統外部輸入及輸出圖[7]

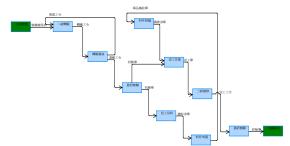
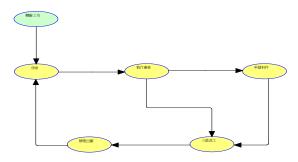



圖5 轉廠維修作業作戰活動[7]

3.5 建立狀態變遷圖

藉由追蹤任務的作戰活動,以其中活動之輸入 作為觸發事件,可導致狀態轉換產出OV-6b狀態轉 換圖(如圖6所示)。在此,狀態可視為執行活動 或等待中的情況,以聯保廠管制士為例,由待命狀 態經收到轉廠工令後,開始一系列之狀態轉換,最 終該任務執行完畢後再回到待命狀態。

圖6 OV-6b狀態變遷圖[7]

3.6 建立 OV-5b 作戰行動模式

將功能架構的活動配置於作業元素上,以決定哪一個作戰元素執行何種活動,以產出完整之OV-5b作戰活動模式如圖7所示。

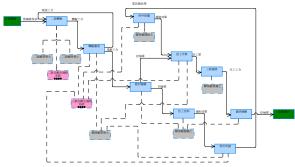


圖7 轉廠維修作業OV-5b作戰活動模式[7]

本研究之"二級轉廠"活動,因其執行角色有3個,為明確各角色任務,故可再向下分解為"二級派工"等5個子活動如圖8所示。

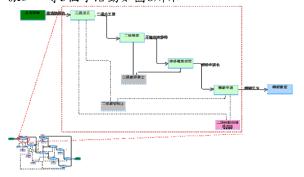


圖8 二級派工OV-5b作戰活動[7]

3.7 建立 OV-2 作戰節點連結

依前一節之活動配置,可明確看出各活動是由哪一個作戰元素執行,並藉由活動間輸入、輸出線的描繪,使吾人了解作戰元素間所需傳遞的資訊,可據以建立需求連結線產出OV-2作戰節點連結如圖9所示。

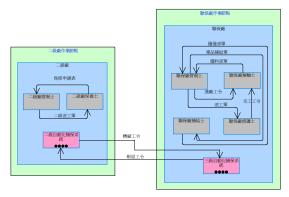


圖9 OV-2作戰節點連結[7]

3.8 建立系統或系統節點間的連結關係

將作業結點包含系統資產的部分,分解成系統節點、系統及系統元素,再依據OV-2的節點間需求線,建立系統或系統節點間的連結關係如圖1010所示。

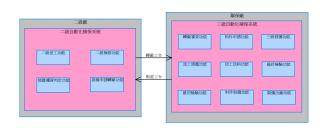


圖10 系統連結關係[7]

3.9 建立 OV-3 資訊交換表

從OV-7邏輯資料模型中,可定義出作業資訊元素,這些是在OV-2作業節點連結描述的需求線流動的資訊,並找出每個節點執行之活動,再將活動間輸入、輸出建立連結線,可獲得以節點為框架之資訊流動細節描述,可獲得完整之OV-3資訊交換對應表如圖11所示。

(CMC) From Performer (DM2)c	(公員 (DMC2)) 二級蘇保養士	(大) (CMCD)) 二級蘇管制士	(人員 (DMZ)) 聯保嚴修護士	工級興運治機 ((ZMCD) 管分)	(CONO) 首个)	(人員 CDMC2)) 群保敵党聯士
(人員 (DM2)) 二級廠保養士		保修申請表				
(人員 (DM2)) 二級廠管制士	二級派工單					
(人員 (DM2)) 聯保廠修護士						完工工令
(人員 (DM2)) 聯保廠補給士					擬發清單	
(人員 (DM2)) 聯保廠管制士			軍工派	軍品補給單		進廠工令
(人員 (DM2)) 聯保廠檢驗士					備料清單	

圖11 OV-3資訊交換[7]

3.10 建立 SV-5 作戰行動至系統功能對應

SV-5提供一個作戰架構與系統架構的連結 (如圖12)。該表描述作戰行動節點對映至系統功 能,因此,一個作戰活動的需求,必須有一個系統 元件來達成其需求。這種作戰行動與系統功能間的 關係可定義為"多對多"的關係,因此一個作戰行動 可具備多個系統功能;而一個系統功能可支援數個 作戰行動。

轉廠 (\$∀-01	系統介面說明 (DM2))	SV-05a 活動至系
(CMC) 類 活動 (DM2)※	二級自動化補保系統	三級自動化補保系統
二級派工	X	
二級檢修	X	
二級轉廠	X	
三級檢修		Х
估工估料		Х
派工作業		Х
料件申請		х
料件飭撥		Х
最初檢驗		Х
最終檢驗		Х
維修權責判定	X	
轉廠申請	X	
轉廠審査		X

圖12 SV-5作戰行動至系統功能對應[7]

3.11 建立 SV-4 系統功能描述

依據OV-5及SV-5之相關資訊,可建立系統功能資料流之描述如圖13,並做適當之功能分解,建立SV-4系統功能描述如圖14。

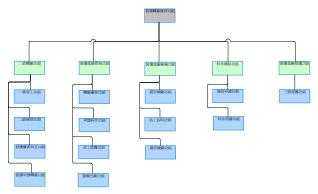


圖13 SV-4系統功能分解[7]

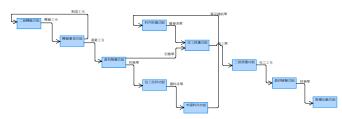


圖14 SV-4系統功能描述[7]

3.12 建立 SV-1 系統介面描述

系統介面藉由系統的作戰節點連結的說明來描述系統、節點和需求線間的關係,並說明作戰架構觀點與系統架構觀之間的關係。從OV-7及SV-11中可找出相關系統資訊元素,利用這些資訊來增加SV-1介面描述細節,包含介面傳輸所含括之資訊元素,以塑建SV-1系統介面描述如圖15。

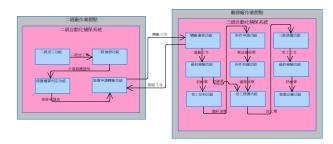


圖15 SV-1系統介面描述[7]

3.13 建立 SV3 系統與系統之對應表

SV-3是經由確認的內部節點間關係來描述系統間的關係,進而呈現系統介面的描述。因此使用SV-3系統與系統之對應表如圖16,將可提供許多類型的資訊。

圖16 系統與系統之對應[7]

3.14 ARENA 模擬模型

本研究將所發展出國軍裝備後勤補保模式之OV-5轉為模擬模型,利用模式模擬軟體分析系統資源配置,並搜集相關參數,以實現性能及效益評估。因模擬模型主要以轉廠維修作業為主,故將DoDAF產製之模型以ARENA來作模式模擬,吾人發現本研究之「轉廠維修作業OV-5」在模擬時均有相對應之模塊可供使用,其對應如表1。

表1 DoDAF作戰活動與ARENA模塊轉換表

項次	DoDAF活動	AREENA模塊
1	主官裝檢	Create1
2	二級轉廠	Process1
3	轉廠審查	Decide1
4	最初檢驗	Decide2
5	估工估料	Process2
6	料件申請	Process3
7	料件飭撥	Process4
8	派工作業	Process5
9	三級檢修	Process6
10	最終檢驗	Process7
11	出廠領回	Dispose1

3.15 轉廠維修模式轉為模擬模型

本研究之模擬模型,是依據轉廠維修模式所分解出之活動「Activity」轉成模擬程序「Process」。例如事件觸發以OV-5模式活動「輸入」表示,其轉成ARENA模擬模型之「Create」,Create模組為事件從外部進入模型的起始點。OV-5模式之活動可分為「Activity 1、Activity 2、Activity 3」,其所對應ARENA模擬模型的程序,分為「Process 1、Process 2、Process 3」,Process模塊意味著此模型

所需的流程或程序,Decide決策模組通常設計於流程分支時,當所建立之OV-5模式欲結束時,表示方式為「輸出」,而將之轉為ARENA模擬模型為「Dispose」,Dispose模組即表示經過此事件就會離開此模型,亦為所模擬的事件結束。

3.16 執行電腦模擬

將轉廠維修作業模式OV-5b轉換成ARENA模 擬模型後(如圖17),藉由執行該模型之電腦模擬, 可得到與該模型相關之實體(工令)處理數、等待 時間、預期需求資源(人力)、實際使用資源等數 據等。

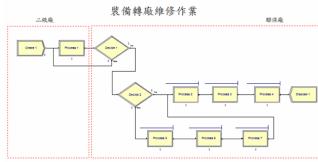


圖17 轉廠維修作業ARENA模擬模型

3.17 模擬結果分析

執行完該模擬模型後,可得知在預期人力使用 狀況來說,以Process7 (料件飭撥)該行為應最耗 用人力資源(如圖18),但經電腦模擬結果可得知, 該行為雖耗用工令作業時間最長,惟其均處於等待 狀態,故其實際需求資源較其餘各項行為為低(如 圖19)。

經運用ARENA實施模式模擬後,可以讓國軍 更容易掌握人力資源的運用,並可進一步增進組織 間的效能,讓國軍能具備更有彈性之人員及組織的 運用,以提高國軍後勤補保的作業能量。

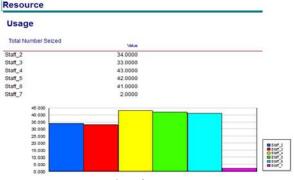


圖19 資源實際使用分析圖

四、討論與結論

目前美軍的DoDAF發展係由C4ISR架構規範而來,且由於C4ISR為未來聯戰最重要的能力發展,其發展工作亦有成效,現在擴及到國防部所有運作都應建立架構規範,以能有效的互通。近乎來,美軍的準則教範均將DoDAF的製作列列。近要求,且我國國軍主要武器均以美軍系統為規範,上我國國軍主要武器均以美軍系統為規範,計算人力。 其方有諸多軍售交易,美軍自多年前已推行DoDAF,我軍應與時俱進配合美國國防部軍方的規格,建立起屬於本身的國防架構規範,除能將整體後勤作業成為三軍共通平台外,並能因DoDAF使未來各系統能相互構連,期使三軍能統一作業模式、規範、語言等,避免浪費投資且能達成三軍聯合作戰。

傳統上企業以企業流程為基礎來導入企業的管理制度,而企業流程偏重於流程最佳化,而忽點其它企業資源的配合。因此本研究帥先提出以DoDAF來重新設計後勤補保的作業制度,並以裝備轉廠維修為例,建置出組織、人員、任務能互相配合的創新架構模型,並運用ARENA實施模式模擬,可以讓國軍更容易掌握人力資源及與外在環境變化,增進組織間的溝通效能,讓國軍能具備更有彈性的人員運用,以提高國軍後勤補保的作業能量。

五、誌謝

本研究承蒙國防部100年度「補助軍事院校教

六、参考文獻

- [1]陸軍司令部,<u>陸軍後勤教則</u>,陸軍司令部,桃園,第1-1-1頁,2009。
- [2]陸軍總司令部,陸軍單位、野戰補給管理作業 手冊,陸軍總司令部,桃園,第71頁,1997。
- [3]徐契舜,"陸軍地區後勤補給體制變革之研究", 陸軍學術月刊,第432期,第46-59頁,2000。
- [4]DoD Architecture Framework Working Group, "DoDAF Architecture Framework Version 1.5 Volume I: Definitions and Guidelines," U.S. DoD, Washington, D.C., U.S.A, 2007.
- [5] Alexander, H. L. and Lee, W. W., "Developing a Process for C4ISR Architecture Design," *Systems Engineering*, Vol. 3, No. 4, pp. 225-247, 2000.
- [6] Alexander, H. L. and Lee, W. W., "Structured Analysis Approach for Architecture Design," *Systems Engineering*, Vol. 3, No. 4, pp. 247-287, 2000.
- [7]張枝成、何仁銘,"國防架構規範導入國軍武器 系統整體後勤之研析",國防部100年度「補助 軍事院校教師從事學術研究」,第45-68頁,桃 園,2011。