
A Component-based Architecture for
Software Vulnerability Management

Chia-Hwa Liu

Institute of Applied Information Technology, Hsing Wu University

Abstract — Recently, the increasing usages of

software system in different web applications are

threaten and attacked for security vulnerabilities.

It impacts the existing information infrastructure

seriously. Thus, how to identify, classify, remediate

and mitigate the vulnerabilities of software had

refereed as an important step to improve the

software system's assurance. Basically the

vulnerabilities are weaknesses in software that

enable an attacker to compromise the integrity,

availability, or confidentiality of that software or

the data it processes. Thus to secure the software,

it is necessary to collect all the related

vulnerabilities in a system before identifying and

removing them. Since component concepts in

software development are expected to exhibit

certain behaviors and characteristics that let them

interact with its environment and other

components. These attributes will fulfill the

cyclical practice requirements of vulnerability

management. Therefore, in this paper, the use of a

component based strategy to create a

comprehensive software vulnerability management

system is presented. (CBASVMS) Which embed

the vulnerability rule base for reasoning

vulnerability attributes and the vulnerability

knowledge base for possible settle methods are

explained. Since the component representation can

separate of concerns in respect of the wide-ranging

functionality available for software applications,

which have advantages of sharing with other

applications and reusability for other new systems,

that will characterize the knowledge of a domain

for vulnerability settlement. According to the

prototyping test, the CBASVMS are suitable for

application in various types of software security

service. The process of identifying and remediation

of software vulnerabilities based on the costs and

benefits associated with it will improve the security

breach, meanwhile, it will reduce the impact or

likelihood of security risk in the future.

Index Terms — software vulnerability,

component-based architecture, secure software

I. INTRODUCTION

Recently, the increasing numbers of

wireless devices and network applications

around world has led to a great demand for the

usage of network software systems. However,

there is a lot of software services in different

web applications are threaten and attacked for

security vulnerabilities as well. Statistics from

Computer Emergency Response Team (CERT),

Open Source Vulnerability Database (OSVDB)

and Common Vulnerability Exposure (CVE)

database confirm that the average number of

reported vulnerabilities increase over time. (see

Figure1). In other words, the occurrences and the

evidences of the security vulnerabilities in

software service development will cause serious

economic impact and hazards. It high-impact

and high-likelihood challenged the existing

information infrastructure. Thus, how to identify,

classify, remediate and mitigate the

vulnerabilities of software had refereed as an

important step to improve the software system's

assurance.

Figure1: The average number of reported

vulnerabilities statistics

Basically the software vulnerabilities can be

seen weaknesses in software that enable an

attacker to compromise the integrity, availability,

or confidentiality of that software or the data it

processes. Thus to secure the software, it is

necessary to collect all the related vulnerabilities

in a system before identifying and removing

them. Typical vendor treatments for users to

identify and classify known vulnerabilities are

using vulnerability scanners. These fragmental

tools look for vulnerabilities known and reported

by the security community, and which generally

are already fixed by relevant vendors with

patches and security updates, thus it is

troublesomely and impractically. Since

components are expected to exhibit certain

behaviors and characteristics that let them

participate in the component structure and

interact with its environment and other

components. When a component offers services

to the rest of the system, it adopts a provided

interface that specifies the services that other

components can utilize, and how they can do so.

Meanwhile, that a component can replace

another at different time, if the successor

component meets the requirements of the initial

components. These attributes will fulfill the

cyclical practice requirements of vulnerability

management. Therefore, in this paper, the use of

a component based strategy to create a

comprehensive software vulnerability

management system is presented. (CBASVMS)

Which embed the vulnerability rule base for

reasoning vulnerability attributes and the

vulnerability knowledge base for possible settle

methods are explained.[2,3] Since the

component representation can separate of

concerns in respect of the wide-ranging

functionality available for software applications,

which have advantages of sharing with other

applications and reusability for other new

systems, that will characterize the knowledge of

a domain for vulnerability settlement and it have

been used in a variety of areas as a support for

creating more intelligent systems. According to

the prototyping test, the CBASVMS are suitable

for application in various types of software

security service. The process of identifying and

remediation of software vulnerabilities based on

the costs and benefits associated with it will

improve the security breach, meanwhile, it will

reduce the impact or likelihood of security risk

in the future.

This paper address some of the concerns

raised for software vulnerability management

architectures and proposes a component-based

framework that supports; (i) generic interfaces to

support heterogeneity and portability, (ii) policy

management to handle stakeholder and user

policies, and (iii)a behavior abstraction to

support extensibility and modularize the

definition of individual optimization/control

goals and their coordination.

The organization of the paper will divide

into five sections. While in section one, the basic

research background is introduced. In section 2,

we survey and explain the related researches.

Section 3 describe the proposed software

vulnerability management system and explain

the needed details of element, and section 4 will

describe current practices of simulation results.

Finally, in the section 5, the overall conclusion

and future perspectives are given.

II. RELATED WORKS
Software vulnerabilities are caused by some

kinds of programming errors and flaws that give

rise to exploit techniques or particular attack

patterns. Some related research about

vulnerabilities management as [1,4] are

presented, but not mention the component

architecture for dynamic expansion. In paper [6],

the optimal policy for software vulnerability

disclosure is discussed. The vulnerability trend

and classification statistics are presented in [8,9],

but without mentioning system development

issues. In paper [12], the researcher propose a

quest for a framework to improve software

security via vulnerability black markets scenario,

which give a good suggestion for the policy

adoption in the field of software vulnerability

disclosure and vulnerability countermeasure in

black markets.

III. BASIC COMPONENT-BASED
ARCHITECTURE DESIGN

The component-based architecture is the basis

design for distributed component embraces

mechanisms and techniques for developing basic

yet reusable business implementation units that

is environment aware. It emphasizes the

separation of concerns in respect of the

wide-ranging functionality available throughout

a given software system. It is a reuse-based

approach to defining, implementing and

composing loosely coupled independent

components into systems.

Component-based systems encompass both

commercial off-the-shelf (COTS) products and

components acquired through other means.[5,6]

The Major elements of a component will include

(1) basic specification (2) One or more

implementing methods (3) component model (4)

packaging approach (5) deployment approach.

And the component can communicate each other

as shown in Figure2. Thus we can use the

component architecture to construct a system,

based on the component model which defining

the rules of linking components together and

suitable component interface with related

platform environment, the system can operate to

fulfill the management purpose. The architecture

proposed in this work is based on component

models for the blocks of the system shown in

Figure 3

IV. SOFTWARE VULNERABILITY
MANAGEMENT SYSTEM DESIGN

Vulnerabilities are weaknesses in software

that enable an attacker to compromise the

integrity, availability, or confidentiality of that

software. Thus, the basic vulnerability

management initiatives should be designed to

indicate where the vulnerabilities will occur first,

and then according to the degree of hazard to set

the vulnerabilities up and follow to check the

way of controls are not being applied adequately

and finally to verify that vulnerabilities have

been remediate.

The vulnerability management must start

out by determining what the desired security

state for their environment, which is the policy

of the vulnerability management and associated

process. According the policy to implement

vulnerability management processes are shown

in Figure4.

There are two types of vulnerabilities:

known and unknown. The known vulnerabilities

are the hazard events have already been found

and reported. The best way to keep up with

known vulnerabilities is to subscribe to regular

security updates from comprehensive

vulnerability databases. However the unknown

vulnerabilities are vulnerabilities that have not

yet been found. Especially new technologies and

proprietary code extensions are frequently

infested with unknown vulnerabilities. Unknown

vulnerability management is not restricted to

testing during development. The instance of

managing security updates, verifying patches,

system integration and network monitoring are

all essential parts of unknown vulnerability

management strategies. The Overall framework

of CBASVMS with related the operational

components and managing functions are shown

in Figure5.

Finally, a simulation example in OWASP top

10 vulnerability list is presented for

demonstration and analyzing. Vulnerability

naming Cross-Site Scripting (XSS) for example,

it is recommending for the vulnerability rule

base for reasoning vulnerability attributes and

the vulnerability knowledge to identify flaw and

possible attacking behaviors. The specification

of vulnerability in knowledge base is shown as

below:

Here the component based strategy is used to

create separating method of the software

vulnerability. The vulnerability rule for

reasoning vulnerability attributes will use to

retrieve the vulnerability knowledge from

database. Thus, the countermeasure strategy can

be used for possible settlement.

V. CONCLUSION
This paper uses a component based strategy

to create a comprehensive software vulnerability

management system. Which embed the

vulnerability rule base for reasoning

vulnerability attributes and the vulnerability

knowledge base for possible settle methods are

explained. Based on the risk management

framework of CBASVMS are suitable for

application in various types of software security

service. The component process of identifying

and remediation of software vulnerabilities

based on the costs and benefits associated with it

will improve the security breach, meanwhile, it

is hope to reduce the impact or likelihood of

security risk in the future.

REFERENCES:
[1] Anna-Maija Juuso and Ari Takanen Unknown

Vulnerability Management,
http://www.codenomicon.com/resources/whitepapers/co
denomicon-wp-unknown-vulnerability-management-201
01019.pdf

[2] Andy Luse, Keven P. S, Anthony M.T” A
Component-Based Framework for Visualization of
Intrusion Detection Events”, Information Security
Journal 17, 2008, 95-107

[3] Jurriaan S and Martin van M,” A Component Based

Architecture for Web Content Management: Runtime

Deployable WebManager Component Bundles”,

proceedings of 8th international conference on web

engineering, 2008

[4] John P. P,” Key Elements of a Threat and Vulnerability

Management Program”, ISACA, online journal,

http://www.isaca.org. 2006

[5] Diego Caberlon Santini, Walter Fetter Lages_ “A

component based architecture for robot control”, Revista

Controle & Automação,Vol.22 no.4, 2011

[6] Arora, Ashish, Rahul Telang, and Hao Xu. “Optimal

Policy for SoftwareVulnerability Disclosure”.

Management Science 54 (4):642-656. 2008.

[7] Browne, H. K., William. A. Arbaugh, John M, and

William. L.F..”A Trend Analysis of exploitations“,

http ://www.cs.umd. edu/~waa/pubs/CS-TR-4200.pdf.

[8] ” Symantec Global Internet Threat Report: Trend for July

- Dec 07”

http://eval.symantec.com/mktginfo/enterprise/

white_papers/bwhitepaper-internet_security_threat_

report_xiii_04-2008.en-us.pdf.

[9] “Symantec Report on Underground

Economy.”http://eval.symantec.com/mktginfo/enterprise

/white_papers/bwhitepaper_underground_economy_rep

ort_11-2008-14525717.en-us.pdf.

[10]Arora, Ashish, Anand Nandkumar, and Rahul Telang..

“Does Information Security Attack Frequency Increase

With Vulnerability Disclosure? An EmpiricalAnalysis.”,

Information System Frontiers 8 (5):350-362. 2006

[11] Arora, Ashish, Rahul Telang, and Hao Xu.” Optimal

Policy for SoftwareVulnerability “,Disclosure.

Management Science 54 (4):642-656. 2008

[12] Jaziar Radianti, Jose J.G, Eliot Rich,” A Quest for a

Framework to Improve Software Security: Vulnerability

Black Markets Scenario”, proceedings of ISDC

Albuquerque, USA, 2009

